www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Identitätssatz für analytische
Identitätssatz für analytische < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Identitätssatz für analytische: Beweis des genannten Satzes
Status: (Frage) beantwortet Status 
Datum: 09:14 Mo 27.02.2017
Autor: havoc1

Aufgabe
Sei [mm]U \subset \mathbb{R}^n[/mm] offen und f analytisch auf U. Dann ist  N = {x [mm] \in [/mm] U : [mm] D^{\alpha}f(x) [/mm] = 0  [mm] \forall \alpha \in \IN^n [/mm] } = U, falls U zusammenhängend und [mm]N \neq \emptyset[/mm] ß.



Hallo,

ich kannte diesen Satz schon, allerdings bisher in einer anderen Formulierung in der ein Häufungspunkt in N verlangt wurde. Ich möchte nun eigentlich hauptsächlich wissen wieso man darauf verzichten kann.

Meine Überlegung dazu:
Da N nicht leer ist erfüllt ein Punkt die Bedingung, wenn ich in dem die Potenzreihe entwickle, dann ist sie identisch 0. Es gibt aber eine offene Umgebung auf der diese Potenzreihe und damit f Null ist. Kann man das so sagen? Sobald man das ja hat kann man ja den üblichen Beweis bringen mit N ist offen und abgeschlossen in U.

        
Bezug
Identitätssatz für analytische: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Mo 27.02.2017
Autor: fred97


> Sei [mm]U \subset \mathbb{R}^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

offen und f analytisch auf U.

> Dann ist  N = {x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

U : Df(x) = 0 } = U, falls U

> zusammenhängend und [mm]M \neq \emptyset[/mm] Df bezeichne dabei
> eine Ableitung beliebiger Ordnung.
>  Hallo,
>  
> ich kannte diesen Satz schon,


Ich nicht. Etwas stimmt hier nicht ! Nehmen wir n=1, U = [mm] \IR [/mm] und [mm] f(x)=e^x-x. [/mm]

Dann ist [mm] $N=\{0\}$. [/mm]

Was ist denn M ?

Wie lautet der Satz korrekt ?



>  allerdings bisher in einer
> anderen Formulierung in der ein Häufungspunkt in N
> verlangt wurde. Ich möchte nun eigentlich hauptsächlich
> wissen wieso man darauf verzichten kann.
>  
> Meine Überlegung dazu:
>  Da N nicht leer ist erfüllt ein Punkt die Bedingung, wenn
> ich in dem die Potenzreihe entwickle, dann ist sie
> identisch 0. Es gibt aber eine offene Umgebung auf der
> diese Potenzreihe und damit f Null ist. Kann man das so
> sagen? Sobald man das ja hat kann man ja den üblichen
> Beweis bringen mit N ist offen und abgeschlossen in U.


Bezug
                
Bezug
Identitätssatz für analytische: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 Mo 27.02.2017
Autor: havoc1

Ich habe die Fehler ausgebessert, ich wollte es etwas einfacher formulieren und habe dabei nicht gemerkt wie missverständlich bzw. sogar falsch damit alles wird.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de