www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Implizite Funk. Ableitung
Implizite Funk. Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mi 25.05.2011
Autor: engels

Aufgabe
Gegeben sei:
[mm] F(x,y,z)=x^{2}yz^{4}+xz^{2}+y^{3}z-3 [/mm]

Sei g(x,y)=z mit F(x,y,g(x,y))=0. Berechne das erste Taylorpolynom von g(x,y) und damit eine Approximation für den Funktionswert von g(0.9,1.1).

Ich hätte das Taylorpolynom in dem Fall erstmal definiert als:

T(x,y)= dg/dx(0.9,1.1)*x + dg/dy(0.9,1.1)*y

Mein Problem hierbei ist, dass ich dg/dx bzw. dg/dy nicht bestimmten kann. Kann mit dabei jemand helfen?

        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 25.05.2011
Autor: Al-Chwarizmi


> Gegeben sei:
> [mm]F(x,y,z)=x^{2}yz^{4}+xz^{2}+y^{3}z-3[/mm]
>  
> Sei g(x,y)=z mit F(x,y,g(x,y))=0. Berechne das erste
> Taylorpolynom von g(x,y) und damit eine Approximation für
> den Funktionswert von g(0.9,1.1).
>  Ich hätte das Taylorpolynom in dem Fall erstmal definiert
> als:
>  
> T(x,y)= dg/dx(0.9,1.1)*x + dg/dy(0.9,1.1)*y
>  
> Mein Problem hierbei ist, dass ich dg/dx bzw. dg/dy nicht
> bestimmten kann. Kann mit dabei jemand helfen?


Bilde die partiellen Ableitungen der Funktion nach x
und nach y.

Beispiel: die Ableitung der Gleichung

       [mm] x^{2}*y*z^{4}+x*z^{2}+y^{3}z-3=0 [/mm]

nach x ist:

    $\ [mm] (2*x)*y*z^4+x^2*y*(4\,z^3*\frac{\partial z}{\partial x})+z^2+x*(2*z*\frac{\partial z}{\partial x})+y^3*\frac{\partial z}{\partial x}=0$ [/mm]

(immer dran denken, dass z auch Funktion von x ist, und
die Produkt- und Kettenregel richtig anwenden !)

Nun kann man diese Gleichung nach [mm] \frac{\partial z}{\partial x} [/mm] auflösen
und die Koordinaten (x,y,z) des vorgegebenen Punktes
einsetzen.
Analog dann für die Ableitung [mm] \frac{\partial z}{\partial y} [/mm] .

LG    Al-Chw.


Bezug
                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Do 26.05.2011
Autor: engels

Das klingt ja schon ganz logisch, nur wenn ich nach [mm] \bruch{dz}{dx} [/mm] umforme, erhalte ich wieder einen Term der abhängig von z ist. Im Taylorpolynom soll ja allerdings kein z vorkommen, da ich dort ja nur x und y einsetze.

Wie bekomm ich denn jetzt das z weg?

Bezug
                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 26.05.2011
Autor: Al-Chwarizmi


> Das klingt ja schon ganz logisch, nur wenn ich nach
> [mm]\bruch{dz}{dx}[/mm] umforme, erhalte ich wieder einen Term der
> abhängig von z ist. Im Taylorpolynom soll ja allerdings
> kein z vorkommen, da ich dort ja nur x und y einsetze.
>
> Wie bekomm ich denn jetzt das z weg?


Die Ableitungen [mm] \frac{\partial z}{\partial x} [/mm]  und  [mm] \frac{\partial z}{\partial y} [/mm] brauchst du ja nur im
Entwicklungspunkt, den du noch wählen kannst.
Es empfiehlt sich dazu der Punkt (1|1|1), in dem
die Flächengleichung offensichtlich erfüllt ist
und der recht nahe an der gewünschten Stelle liegt.

LG    Al-Chw.


Bezug
                                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Fr 27.05.2011
Autor: engels

Oke, das habe ich gemacht, nur wunder ich mich etwas über das Ergebnis:

[mm] \bruch{dz}{dx} [/mm] = - [mm] \bruch{3}{7} [/mm]
[mm] \bruch{dz}{dy} [/mm] = - [mm] \bruch{4}{7} [/mm]

Wenn ich die Werte so in meiner Taylorentwicklung einsetze komme ich auf:

[mm] -\bruch{3}{7}*0,9+ [/mm] - [mm] \bruch{4}{7}*1,1 [/mm] = -1,041...

Das "-" wundert mich etwas, da der Wert doch eigentlich gegen 1 gehen müsste, oder?

Bezug
                                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Fr 27.05.2011
Autor: Al-Chwarizmi


> Oke, das habe ich gemacht, nur wunder ich mich etwas über
> das Ergebnis:
>  
> [mm]\bruch{dz}{dx}[/mm] = - [mm]\bruch{3}{7}[/mm]
>  [mm]\bruch{dz}{dy}[/mm] = - [mm]\bruch{4}{7}[/mm]

Die Ableitungswerte stimmen.

> Wenn ich die Werte so in meiner Taylorentwicklung einsetze
> komme ich auf:
>
> [mm]-\bruch{3}{7}*0,9+[/mm] - [mm]\bruch{4}{7}*1,1[/mm] = -1,041...    [haee]

Du musst beachten, dass wir es hier mit einer Taylorent-
wicklung beim Stützpunkt (1|1|1) zu tun haben !
  

> Das "-" wundert mich etwas, da der Wert doch eigentlich
> gegen 1 gehen müsste, oder?

Ja, der richtige Wert für die Approximation von g(0.9,1.1)
liegt recht nahe bei +1 .

LG    Al-Chw.


Bezug
                                                
Bezug
Implizite Funk. Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Fr 27.05.2011
Autor: engels

Oke, ich hab nochmal nachgeschlagen und hoffe, dass ich es jetzt richtig verstanden habe. Also ich entwickle g(x,y) im Punkt (1,1). Daher hat die Taylorentwicklung im meinem Fall die Form:

T(x,y) = g(1,1) + dz/dx(1,1,1)*(x-1) +dz/dy(1,1,1)*(y-1)

==> T(0.9,1.1) = 1 + [mm] -\bruch{3}{7}\cdot{}(0,9-1)+ -\bruch{4}{7}\cdot{}(1.1-1) \approx [/mm] 0.9857...

Bezug
                                                        
Bezug
Implizite Funk. Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Fr 27.05.2011
Autor: MathePower

Hallo engels,

> Oke, ich hab nochmal nachgeschlagen und hoffe, dass ich es
> jetzt richtig verstanden habe. Also ich entwickle g(x,y) im
> Punkt (1,1). Daher hat die Taylorentwicklung im meinem Fall
> die Form:
>  
> T(x,y) = g(1,1) + dz/dx(1,1,1)*(x-1) +dz/dy(1,1,1)*(y-1)
>  
> ==> T(0.9,1.1) = 1 + [mm]-\bruch{3}{7}\cdot{}(0,9-1)+ -\bruch{4}{7}\cdot{}(1.1-1) \approx[/mm]
> 0.9857...


[ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de