www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Implizite Trapezregel
Implizite Trapezregel < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:04 Do 22.01.2015
Autor: Trikolon

Aufgabe
Gegeben:
[mm] y'=\pmat{ 0 & 2 & -1\\ 0 & -300 & 0\\ 0 & -598 & -1 }y, y(0)=\vektor{2 \\ 5 \\11} [/mm]
Benutze zur numerischen Lösung die implizite Trapezregel [mm] y_{n+1}=y_n+h/2(f_{n+1}+f_n) [/mm] und leite eine explizite Darstellung der Iterierten [mm] y_n [/mm] her.

Hallo,

mir ist nicht ganz klar, wie ich die Trapezregel auf das AWP anwenden soll. Ich wollte zunächst versuchen, ein paar Werte auszurechnen:

[mm] y_1=y_0+h/2(f_1+f_0). [/mm]

Mein Problem: Was ist [mm] f_1 [/mm] und was [mm] f_0?? [/mm]

Danke im Voraus!

        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 Fr 23.01.2015
Autor: fred97


> Gegeben:
>  [mm]y'=\pmat{ 0 & 2 & -1\\ 0 & -300 & 0\\ 0 & -598 & -1 }y, y(0)=\vektor{2 \\ 5 \\11}[/mm]
>  
> Benutze zur numerischen Lösung die implizite Trapezregel
> [mm]y_{n+1}=y_n+h/2(f_{n+1}+f_n)[/mm] und leite eine explizite
> Darstellung der Iterierten [mm]y_n[/mm] her.
>  Hallo,
>  
> mir ist nicht ganz klar, wie ich die Trapezregel auf das
> AWP anwenden soll. Ich wollte zunächst versuchen, ein paar
> Werte auszurechnen:
>  
> [mm]y_1=y_0+h/2(f_1+f_0).[/mm]
>  
> Mein Problem: Was ist [mm]f_1[/mm] und was [mm]f_0??[/mm]

Es ist

    [mm] $f_n [/mm] := [mm] f(t_n,y_n). [/mm] $

FRED

>  
> Danke im Voraus!


Bezug
                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 Fr 23.01.2015
Autor: Trikolon

Also so:
[mm] y_1= \vektor{2 \\ 5 \\11} +h/2(\pmat{ 0 & 2 & -1\\ 0 & -300 & 0\\ 0 & -598 & -1 }y_1+\vektor{-1\\ 1500 \\-3001}) [/mm]
?
Oh je, ob man da für [mm] y_n [/mm] eine Formel erkennt..

Bezug
                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Fr 23.01.2015
Autor: leduart

Hallo
[mm] y_1=y_0+h/2*A*y_1+h/2*A*y_0 [/mm]
schreibe [mm] y_1=E*y_1 [/mm] und löse nach [mm] y_1 [/mm] auf
dann schreib so allgemein [mm] y_2 [/mm] auf und lös wieder auf
Gruss leduart


Bezug
                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:24 Fr 23.01.2015
Autor: Trikolon

[mm] y_1=y_0+h/2\cdot{}A\cdot{}y_1+h/2\cdot{}A\cdot{}y_0 [/mm]

--> [mm] y_1-h/2Ay_1=y_0+h/2Ay_0 [/mm] --> [mm] y_1(E-h/2A)=y_0+h/2Ay_0 [/mm]
Und nun?

Bezug
                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Fr 23.01.2015
Autor: MathePower

Hallo Trikolon,

>  [mm]y_1=y_0+h/2\cdot{}A\cdot{}y_1+h/2\cdot{}A\cdot{}y_0[/mm]
>
> --> [mm]y_1-h/2Ay_1=y_0+h/2Ay_0[/mm] --> [mm]y_1(E-h/2A)=y_0+h/2Ay_0[/mm]
> Und nun?


Das muss doch so lauten:

[mm]\left(E-\bruch{h}{2}A\right)y_{1}=\left(E+\bruch{h}{2}A\right)y_{0}[/mm]

Multipliziere jetzt mit der Inversen von [mm]\left(E-\bruch{h}{2}A\right)[/mm].


Gruss
MathePower

Bezug
                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 23.01.2015
Autor: Trikolon

[mm] y_{1}=(\left(E+\bruch{h}{2}A\right)y_{0}) \left(E-\bruch{h}{2}A\right)^{-1} [/mm]

Kann man das noch vereinfachen?

Bezug
                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Sa 24.01.2015
Autor: leduart

Hallo
spannend wirds erst wenn du weitermachst
Gruß leduart

Bezug
                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:12 Sa 24.01.2015
Autor: Trikolon

Genau das bin ich mir ja nicht sicher.  Wie vereinfacht man das?

Bezug
                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Sa 24.01.2015
Autor: meili

Hallo,

Besser [mm] $y_0 [/mm] = [mm] \left(E-\bruch{h}{2}A\right)^{-1}*\left(E+\bruch{h}{2}A\right)y_0$, [/mm]

da Matrixmultiplikation nicht zwingend kommutativ ist.

[mm] $E-\bruch{h}{2}A$ [/mm] kannst du in Abhänigkeit von h konkret hinschreiben,
und dann invertierten.
Dann noch mit [mm] $E+\bruch{h}{2}A$ [/mm] multiplizieren.

So bekommst du eine Matrix B abhängig von h heraus mit [mm] $y_1 [/mm] = [mm] By_0$, [/mm]
oder auch [mm] $y_{n+1} [/mm] = [mm] By_n$. [/mm]

Gruß
meili

Bezug
                                                                                
Bezug
Implizite Trapezregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Sa 24.01.2015
Autor: Trikolon

Ohje, davon die Inverse ausrechnen macht richtig Spaß...

Bezug
                                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 So 25.01.2015
Autor: Trikolon

Nach ewiger Rechnerei hab ich das hier raus:

[mm] \left(E-\bruch{h}{2}A\right)^{-1}=\pmat{ 1 & \bruch{h}{1+150h} & \bruch{300h^2+2h}{2(301h+2+150h^2)} \\ 0 & \bruch{1}{1+150h} & 0\\ 0 & \bruch{-598h}{301h+2+150h^2} & \bruch{300h+2}{301h+2+150h^2}} [/mm]

Stimmt das? Ist dieser Weg wirklich zielführend?

Bezug
                                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 So 25.01.2015
Autor: MathePower

Hallo Trikolon,



> Nach ewiger Rechnerei hab ich das hier raus:
>
> [mm]\left(E-\bruch{h}{2}A\right)^{-1}=\pmat{ 1 & \bruch{h}{1+150h} & \bruch{300h^2+2h}{2(301h+2+150h^2)} \\ 0 & \bruch{1}{1+150h} & 0\\ 0 & \bruch{-598h}{301h+2+150h^2} & \bruch{300h+2}{301h+2+150h^2}}[/mm]
>  


Das 2. Element in der 1.Zeile stimmt nicht.

Das 3. Element in der 1.Zeile lässt sich
noch eleganter schrieben und  ist
vorzeichenbehaftet.


> Stimmt das? Ist dieser Weg wirklich zielführend?


Gruss
MathePower

Bezug
                                                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Mo 26.01.2015
Autor: Trikolon

[mm] \left(E-\bruch{h}{2}A\right)^{-1}=\pmat{ 1 & \bruch{298h^2-2h}{2+301h+150h^2} & \bruch{300h^2+2h}{2(301h+2+150h^2)} \\ 0 & \bruch{1}{1+150h} & 0\\ 0 & \bruch{-598h}{301h+2+150h^2} & \bruch{2}{2+h}} [/mm]  

So besser?

Bezug
                                                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Di 27.01.2015
Autor: meili

Hallo,

> [mm]\left(E-\bruch{h}{2}A\right)^{-1}=\pmat{ 1 & \bruch{298h^2-2h}{2+301h+150h^2} & \bruch{300h^2+2h}{2(301h+2+150h^2)} \\ 0 & \bruch{1}{1+150h} & 0\\ 0 & \bruch{-598h}{301h+2+150h^2} & \bruch{2}{2+h}}[/mm]

Schon mal ausprobiert [mm] $\left(E-\bruch{h}{2}A\right)^{-1}\left(E-\bruch{h}{2}A\right) [/mm] = E$?

>  
>
> So besser?

Besser ja, aber noch nicht richtig.

Die erste Zeile müsste [mm] $\qquad 1\qquad \bruch{2h}{2+h} \qquad -\bruch{h}{2+h} \qquad$ [/mm] sein.

Der 3. Ausdruck in der ersten Zeile lässt sich dazu kürzen,
aber das Minuszeichen fehlt trotzdem.

Gruß
meili


Bezug
                                                                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:17 Di 27.01.2015
Autor: Trikolon

Aber im zweiten Faktor muss doch E+h/2A stehen. Und dann kommt bei mir nicht die Einheitsmatrix raus.

Bezug
                                                                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 05:50 Mi 28.01.2015
Autor: meili

Hallo,

> Aber im zweiten Faktor muss doch E+h/2A stehen. Und dann
> kommt bei mir nicht die Einheitsmatrix raus.

Das ist richtig für die Berechnung der Matrix B mit [mm] $y_{n+1} [/mm] = [mm] By_n$. [/mm]


[mm] $\left(E-\bruch{h}{2}A\right)^{-1}*\left(E-\bruch{h}{2}A\right) [/mm] = E$
ist nur um zu testen ob, die Inverse stimmt.

Gruß
meili


Bezug
                                                                                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 28.01.2015
Autor: Trikolon

[mm] \left(E-\bruch{h}{2}A\right)^{-1}\cdot{}\left(E+\bruch{h}{2}A\right) [/mm] = [mm] \pmat{ 1 & \bruch{2h+2}{2+h} & \bruch{-h}{h+2} \\ 0 & \bruch{1-150h}{1+150h} & 0 \\ 0 & \bruch{-1196}{(h+2)1+150h)} & \bruch{2-2h}{2+h}} [/mm]

Ist das so ok? Aber wenn ich das jetzt mit [mm] y_0 [/mm] multipliziere, fällt mir nix besonders auf...

Bezug
                                                                                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mi 28.01.2015
Autor: MathePower

Hallo Trikolon,

>
> [mm]\left(E-\bruch{h}{2}A\right)^{-1}\cdot{}\left(E+\bruch{h}{2}A\right)[/mm]
> = [mm]\pmat{ 1 & \bruch{2h+2}{2+h} & \bruch{-h}{h+2} \\ 0 & \bruch{1-150h}{1+150h} & 0 \\ 0 & \bruch{-1196}{(h+2)1+150h)} & \bruch{2-2h}{2+h}}[/mm]
>  


Die ausmultiplizierte Matrix muss doch so lauten:

[mm]\left(E-\bruch{h}{2}A\right)^{-1}\cdot{}\left(E+\bruch{h}{2}A\right) = \pmat{ 1 & \bruch{\blue{4h}}{2+h} & \bruch{-h}{h+2} \\ 0 & \bruch{1-150h}{1+150h} & 0 \\ 0 & \bruch{-1196}{(h+2)1+150h)} & \bruch{2-\blue{h}}{2+h}}[/mm]


> Ist das so ok? Aber wenn ich das jetzt mit [mm]y_0[/mm]
> multipliziere, fällt mir nix besonders auf...


Gruss
MathePower

Bezug
                                                                                                                                                
Bezug
Implizite Trapezregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Mi 28.01.2015
Autor: Trikolon

Multipliziert mit [mm] y_0 [/mm] erhalte ich
[mm] y_1=\vektor{\bruch{2h-5}{h+2} \\ \bruch{5(1-150h)}{1+150h} \\ \bruch{-1650h^2+3289h-5958}{(h+2)(1+150h)}} [/mm]

Und nun?

Bezug
                                                                                                                                                        
Bezug
Implizite Trapezregel: Antwort
Status: (Antwort) fertig Status 
Datum: 06:02 Do 29.01.2015
Autor: meili

Hallo,

nach Aufgabenstellung sollst du eine explizite Darstellung für [mm] $y_n$ [/mm] angeben.

Mit

[mm] $y_n [/mm] = [mm] \pmat{1 & \bruch{4h}{2+h} & -\bruch{2h}{2+h} \\0 & \bruch{1-150h}{1+150h} & 0 \\ 0 & -\bruch{1196h}{(1+150h)(2+h)} & \bruch{2-h}{2+h}}y_{n-1}$ [/mm]    $n [mm] \ge [/mm] 1$

bzw.


[mm] $y_n [/mm] = [mm] \pmat{1 & \bruch{4h}{2+h} & -\bruch{2h}{2+h} \\0 & \bruch{1-150h}{1+150h} & 0 \\ 0 & -\bruch{1196h}{(1+150h)(2+h)} & \bruch{2-h}{2+h}}^n *\vektor{2 \\ 5 \\ 11}$ [/mm]    $n [mm] \ge [/mm] 1$

bist du fertig.

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de