www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Indexverschiebung
Indexverschiebung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indexverschiebung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 So 27.11.2005
Autor: Sandeu

Hallo,
zu allererst mal einen schönen ersten Advent...

Ich habe die Aufgabe, den Grenzwert der konvergenten Reihe zu bestimmen:

[mm] \summe_{n=2}^{ \infty} \bruch{1}{ n^{2} - 1} [/mm]

Mein Lösungsweg:

Finde A, B, so dass gilt  [mm] \bruch{1}{n(n- \bruch{1}{n})} [/mm] =  [mm] \bruch{A}{n} [/mm] +  [mm] \bruch{B}{n- \bruch{1}{n}} [/mm]  
[mm] \Rightarrow [/mm] 1= A(n- [mm] \bruch{1}{n}) [/mm] +Bn
=An-A [mm] \bruch{1}{n} [/mm] +Bn
= [mm] \underbrace{(A+B)n}_{= n^{1}} [/mm] -  [mm] \underbrace{ \bruch{1}{n}A}_{= n^{0}} [/mm]

Koeffizientenvergleich:  
[mm] n^{0}: [/mm] 1= - [mm] \bruch{1}{n}A \Rightarrow [/mm] A= -n
[mm] n^{1}: [/mm] 0= A+B  [mm] \Rightarrow [/mm] 0=n+B  [mm] \Rightarrow [/mm] B=n

also gilt:  [mm] \bruch{1}{n(n- \bruch{1}{n})}= \bruch{-n}{n}+ \bruch{n}{n- \bruch{1}{n}} [/mm] = -1+ [mm] \bruch{n}{n- \bruch{1}{n}} \forall [/mm] n [mm] \in \IN [/mm]

Es gilt:
[mm] \summe_{n=2}^{ \infty} \bruch{1}{n(n- \bruch{1}{n})}= \limes_{k\rightarrow\infty}( \summe_{n=2}^{k} \bruch{1}{n(n- \bruch{1}{n})}) [/mm] =  [mm] \limes_{k\rightarrow\infty}( \summe_{n=2}^{k}(-1+ \bruch{n}{n- \bruch{1}{n}}))= \limes_{k\rightarrow\infty}( \summe_{n=2}^{k}-1+ \summe_{n=2}^{k} \bruch{n}{n- \bruch{1}{n}}) [/mm]

An dieser Stelle soll ich mit dem Indexshift fortfahren, ich weiß nur nicht wie.
Kann mir da jemand helfen???

        
Bezug
Indexverschiebung: andere Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 00:11 Mo 28.11.2005
Autor: Loddar

Hallo Sandeu!


> Finde A, B, so dass gilt  [mm]\bruch{1}{n(n- \bruch{1}{n})}[/mm] =  [mm]\bruch{A}{n}[/mm] +  [mm]\bruch{B}{n- \bruch{1}{n}}[/mm]

[notok] Wähle folgende Partialbruchzerlegung:

[mm] $\bruch{1}{n^2-1} [/mm] \ = \ [mm] \bruch{1}{(n-1)*(n+1)} [/mm] \ = \ [mm] \bruch{A}{n-1} [/mm] + [mm] \bruch{B}{n+1}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Indexverschiebung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:24 Mo 28.11.2005
Autor: Sandeu

Gut, dann komme ich auf

[mm] \limes_{k\rightarrow\infty}( \summe_{n=2}^{k} \bruch{0,5}{n-1}- \summe_{n=4}^{k+2} \bruch{0,5}{n-1})= \bruch{3}{4} [/mm]

Ist das so richtig???

Bezug
                        
Bezug
Indexverschiebung: Ergebnis richtig
Status: (Antwort) fertig Status 
Datum: 09:47 Mo 28.11.2005
Autor: Loddar

Guten Morgen Sandeu!


Das Ergebnis mit [mm] $\bruch{3}{4}$ [/mm] habe ich auch erhalten.

Aber warum so kompliziert mit der Indexverschiebung?


[mm] $\summe_{k=2}^{\infty}\left(\bruch{0.5}{k-1}-\bruch{0.5}{k+1}\right) [/mm] \ = \ [mm] \bruch{1}{2}*\summe_{k=2}^{\infty}\left(\bruch{1}{k-1}-\bruch{1}{k+1}\right)$ [/mm]

$= \ [mm] \bruch{1}{2}*\left(\underbrace{\red{\bruch{1}{1}}-\bruch{1}{3}}_{k=2}\underbrace{ + \red{\bruch{1}{2}}-\bruch{1}{4}}_{k=3}\underbrace{+\bruch{1}{3}-\bruch{1}{5}}_{k=4}\underbrace{+\bruch{1}{4}-\bruch{1}{6}}_{k=5} \pm ...\right) [/mm] \ = \ [mm] \bruch{1}{2}*\left(1 + \bruch{1}{2}\right) [/mm] \ = \ [mm] \bruch{3}{4}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Indexverschiebung: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 28.11.2005
Autor: Tequila

hi

hab mal ne frage zu
[mm] \bruch{1}{2}\cdot{}\left(\underbrace{\red{\bruch{1}{1}}-\bruch{1}{3}}_{k=2}\underbrace{ + \red{\bruch{1}{2}}-\bruch{1}{4}}_{k=3}\underbrace{+\bruch{1}{3}-\bruch{1}{5}}_{k=4}\underbrace{+\bruch{1}{4}-\bruch{1}{6}}_{k=5} \pm ...\right) [/mm]  =  [mm] \bruch{1}{2}\cdot{}\left(1 + \bruch{1}{2}\right) [/mm]  = [mm] \bruch{3}{4} [/mm]


das mit rot markierte wie schätzt du das ab?
bei ner teleskopsumme wüsste ich das da hat man ja [mm] a_{k} [/mm] - [mm] a_{k+1} [/mm]
dann einfach die grenzen unten und oben einsetzen, wäre in dem fall 2 und unendlich


gibts da ne allgemeine vorgehensweise? ich versteh das nicht wie du das genau abschätzt das du dann schreiben kannst (1 + [mm] \bruch{1}{2}) [/mm]  weil eigentlich hat man ja in dem fall [mm] a_{k-1} [/mm] - [mm] a_{k+1} [/mm]



Bezug
                                        
Bezug
Indexverschiebung: Ganz simpel: aufschreiben
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 28.11.2005
Autor: Loddar

Hallo Tequila!


Ich habe mir schlicht und ergreifend die ersten Glieder der Reihe aufgeschrieben und betrachtet, welche Terme sich eliminieren und welche nicht.

Verblieben in dieser Betrachtung sind dann halt $1_$ und [mm] $\bruch{1}{2}$ [/mm] ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de