www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Indices aufloesbarer Gruppen
Indices aufloesbarer Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indices aufloesbarer Gruppen: Tip
Status: (Frage) überfällig Status 
Datum: 08:47 Do 17.11.2011
Autor: hippias

Aufgabe
Es sei $G$ eine endliche, aufloesbare Gruppe mit [mm] $\Phi(G)= [/mm] 1$ und sei [mm] $M\leq [/mm] G$ maximal. Dann gibt es zu jedem [mm] $U\leq [/mm] M$ ein [mm] $X\leq [/mm] G$ mit $|M:U|= |G:X|$.

Ich sehe die Behauptung nur in Spezialfaellen ein (z.B. U= M, U=1), sehe jedoch nicht, wie ich das als Induktionsanfang nutzen koennte. Den einzigen Nutzen von [mm] $\Phi(G)=1$, [/mm] der mir hier sinnvoll erscheint, ist die Existenz einer maximalen Untergruppe, die nicht $U$ enthaelt, wenn $U>1$. Ich vermute auch stark, dass man die Existenz von Hall-Untergruppen benutzen muesste, aber ich weiss nicht richtig, wie.

Also: wie kann man die Behauptung zeigen?

Ich habe die Frage sonst nirgends im Internet gestellt.

        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Fr 18.11.2011
Autor: felixf

Moin,

> Es sei [mm]G[/mm] eine endliche, aufloesbare Gruppe mit [mm]\Phi(G)= 1[/mm]
> und sei [mm]M\leq G[/mm] maximal. Dann gibt es zu jedem [mm]U\leq M[/mm] ein
> [mm]X\leq G[/mm] mit [mm]|M:U|= |G:X|[/mm].

was genau ist denn [mm] $\Phi(G)$? [/mm]

LG Felix


Bezug
                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 So 20.11.2011
Autor: hippias

[mm] $\Phi(G)$ [/mm] ist der Durchschnitt aller maximalen Untergruppen der Gruppe $G$.

Bezug
                        
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:26 Mo 21.11.2011
Autor: felixf

Moin!

> [mm]\Phi(G)[/mm] ist der Durchschnitt aller maximalen Untergruppen
> der Gruppe [mm]G[/mm].

Hmm. Stimmt die Aufgabe ueberhaupt?

Was ist, wenn ich $G = [mm] A_4$ [/mm] nehme? Dann hat $G$ 12 Elemente und ist aufloesbar. Da $G$ keine Untergruppe der Ordnung 6 hat, muessen alle Untergruppen die Ordnungen 1, 2, 3, 4, 12 haben. Maximale Untergruppen haben also die Ordnung 3 und 4 (2 geht nicht wegen Sylow). Wenn man also den Schnitt aller maximalen Untergruppen nimmt, kann dieser nur Elemente der Ordnung 1 enthalten, womit [mm] $\Phi(G) [/mm] = 1$ ist.

Sei nun $M$ eine vierelementige Untergruppe von $G$. Diese ist maximal, und es gibt ein $U [mm] \le [/mm] M$ mit $|M:U| = 2$. Wenn die Aufgabe stimmen wuerde, muesste es ein $X [mm] \le [/mm] G$ mit $|G:X| = |M:U| = 2$ geben - was aber nicht geht, da $G$ keine Untergruppe der Ordnung 6 hat.

Oder habe ich etwas uebersehen?

LG Felix


Bezug
                                
Bezug
Indices aufloesbarer Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:44 Mo 21.11.2011
Autor: hippias

Danke fuer das Gegenbeispiel! Es ist insofern beruhigend, als dass mir der Beweis dieser Behauptung schwergefallen ist, andererseits habe ich eben diese benutzt,um etwas anderes zu zeigen. Allerdings wuesste ich gerne, wie die Bedingungen abgeaendert werden muessten, damit die Schlussfolgerung stimmt, denn ich vermute da ist nur ein kleiner Fehler in der Formulierung. Beim ersten Lesen, hatte ich mich verlesen und wollte die Existenz einer Untergruppe, deren Ordnung gleich dem Index ist, nachweisen, aber das ist ja auch verkehrt.

Bezug
        
Bezug
Indices aufloesbarer Gruppen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 19.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de