www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Indikatorfunktion, symm. Diff.
Indikatorfunktion, symm. Diff. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Indikatorfunktion, symm. Diff.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 10.10.2012
Autor: Pia90

Hallo zusammen,

kaum hat das Semester wieder angefangen, da hänge ich schon wieder an meinen Übungsaufgaben fest.

Und zwar geht es um folgende Aufgabe: X [mm] \not= \emptyset [/mm] ist eine Menge. Für A [mm] \subset [/mm] X ist die Indikatorfunktion [mm] x_A [/mm] zu A definiert durch [mm] x_A: [/mm] X [mm] \to \IR, [/mm] x [mm] \mapsto \begin{cases} 1, & falls x \in A \\ 0, & falls x \not\in A \end{cases} [/mm]

Nun soll ich unter anderem folgendes für A, B [mm] \subset [/mm] X zeigen:
[mm] x_{A \Delta B} [/mm] = [mm] |x_A [/mm] - [mm] x_B| [/mm]

Leider bekomm ich das (noch) nicht hin...

A [mm] \Delta [/mm] B = (A [mm] \backslash [/mm] B) [mm] \cup [/mm] (B [mm] \backslash [/mm] A)

Mein erster Gedanke war eine Fallunterscheidung in die folgenden vier Fälle:
- x [mm] \in [/mm] A, x [mm] \notin [/mm] B
- x [mm] \in [/mm] A, x [mm] \in [/mm] B
- x [mm] \notin [/mm] A, x [mm] \in [/mm] B
- x [mm] \notin [/mm] A, x [mm] \notin [/mm] B

Das bringt mich aber leider auch nicht wirklich weiter.

Kann mir vielleicht jemand erklären, wie ich am besten vorgehe bzw. Tipps geben, was ich tun muss, um das Gewünschte zu zeigen?

Vielen Dank schonmal und liebe Grüße!

        
Bezug
Indikatorfunktion, symm. Diff.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Mi 10.10.2012
Autor: fred97


> Hallo zusammen,
>  
> kaum hat das Semester wieder angefangen, da hänge ich
> schon wieder an meinen Übungsaufgaben fest.
>  
> Und zwar geht es um folgende Aufgabe: X [mm]\not= \emptyset[/mm] ist
> eine Menge. Für A [mm]\subset[/mm] X ist die Indikatorfunktion [mm]x_A[/mm]
> zu A definiert durch [mm]x_A:[/mm] X [mm]\to \IR,[/mm] x [mm]\mapsto \begin{cases} 1, & falls x \in A \\ 0, & falls x \not\in A \end{cases}[/mm]

Habt Ihr diese Funktion wirklich mit [mm] x_A [/mm] bez. ?  Oder etwa mit [mm] \chi_A [/mm] ?  (Klick mal drauf)


>  
> Nun soll ich unter anderem folgendes für A, B [mm]\subset[/mm] X
> zeigen:
> [mm]x_{A \Delta B}[/mm] = [mm]|x_A[/mm] - [mm]x_B|[/mm]
>
> Leider bekomm ich das (noch) nicht hin...
>
> A [mm]\Delta[/mm] B = (A [mm]\backslash[/mm] B) [mm]\cup[/mm] (B [mm]\backslash[/mm] A)
>  
> Mein erster Gedanke war eine Fallunterscheidung in die
> folgenden vier Fälle:
>  - x [mm]\in[/mm] A, x [mm]\notin[/mm] B
>  - x [mm]\in[/mm] A, x [mm]\in[/mm] B
>  - x [mm]\notin[/mm] A, x [mm]\in[/mm] B
>  - x [mm]\notin[/mm] A, x [mm]\notin[/mm] B
>  
> Das bringt mich aber leider auch nicht wirklich weiter.

Aber hallo, natürlich bringt Dich das weiter !

Nehmen wir uns mal den Fall  x [mm]\in[/mm] A, x [mm]\notin[/mm] B   vor (ich schreibe nun auch [mm] x_A): [/mm]

Dann ist doch  [mm] |x_A(x)-x_B(x)|=|1-0|=1 [/mm]  und , wegen x [mm] \in [/mm] A [mm] \Delta [/mm] B, ist auch [mm] x_{A \Delta B}(x)=1. [/mm]


Noch ein Fall: x [mm]\in[/mm] A, x [mm]\in[/mm] B:

Dann ist   [mm] |x_A(x)-x_B(x)|=|1-1|=0 [/mm] und , wegen x [mm] \notin [/mm] A [mm] \Delta [/mm] B, ist auch [mm] x_{A \Delta B}(x)=0. [/mm]

Den Rest machst Du.

FRED

>  
> Kann mir vielleicht jemand erklären, wie ich am besten
> vorgehe bzw. Tipps geben, was ich tun muss, um das
> Gewünschte zu zeigen?
>  
> Vielen Dank schonmal und liebe Grüße!


Bezug
                
Bezug
Indikatorfunktion, symm. Diff.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Mi 10.10.2012
Autor: Pia90


> > Hallo zusammen,
>  >  
> > kaum hat das Semester wieder angefangen, da hänge ich
> > schon wieder an meinen Übungsaufgaben fest.
>  >  
> > Und zwar geht es um folgende Aufgabe: X [mm]\not= \emptyset[/mm] ist
> > eine Menge. Für A [mm]\subset[/mm] X ist die Indikatorfunktion [mm]x_A[/mm]
> > zu A definiert durch [mm]x_A:[/mm] X [mm]\to \IR,[/mm] x [mm]\mapsto \begin{cases} 1, & falls x \in A \\ 0, & falls x \not\in A \end{cases}[/mm]
>  
> Habt Ihr diese Funktion wirklich mit [mm]x_A[/mm] bez. ?  Oder etwa
> mit [mm]\chi_A[/mm] ?  (Klick mal drauf)

Ja, die Funktion wurde mit [mm] \chi_A [/mm] bezeichnet, aber zwecks mangelndes Wissens, wie ich hier ein [mm] \chi [/mm] schreibe, habe ich es umbenannt... Jetzt habe ich es gelernt und werde es in Zukunft richtig schreiben :) Danke!

>  
>
> >  

> > Nun soll ich unter anderem folgendes für A, B [mm]\subset[/mm] X
> > zeigen:
> > [mm]x_{A \Delta B}[/mm] = [mm]|x_A[/mm] - [mm]x_B|[/mm]
> >
> > Leider bekomm ich das (noch) nicht hin...
> >
> > A [mm]\Delta[/mm] B = (A [mm]\backslash[/mm] B) [mm]\cup[/mm] (B [mm]\backslash[/mm] A)
>  >  
> > Mein erster Gedanke war eine Fallunterscheidung in die
> > folgenden vier Fälle:
>  >  - x [mm]\in[/mm] A, x [mm]\notin[/mm] B
>  >  - x [mm]\in[/mm] A, x [mm]\in[/mm] B
>  >  - x [mm]\notin[/mm] A, x [mm]\in[/mm] B
>  >  - x [mm]\notin[/mm] A, x [mm]\notin[/mm] B
>  >  
> > Das bringt mich aber leider auch nicht wirklich weiter.
>  
> Aber hallo, natürlich bringt Dich das weiter !
>  
> Nehmen wir uns mal den Fall  x [mm]\in[/mm] A, x [mm]\notin[/mm] B   vor (ich
> schreibe nun auch [mm]x_A):[/mm]
>  
> Dann ist doch  [mm]|x_A(x)-x_B(x)|=|1-0|=1[/mm]  und , wegen x [mm]\in[/mm] A
> [mm]\Delta[/mm] B, ist auch [mm]x_{A \Delta B}(x)=1.[/mm]
>  
>
> Noch ein Fall: x [mm]\in[/mm] A, x [mm]\in[/mm] B:
>  
> Dann ist   [mm]|x_A(x)-x_B(x)|=|1-1|=0[/mm] und , wegen x [mm]\notin[/mm] A
> [mm]\Delta[/mm] B, ist auch [mm]x_{A \Delta B}(x)=0.[/mm]
>  
> Den Rest machst Du.
>  
> FRED

Vielen, vielen Dank!
Wenn ich alles richtig verstanden hab (was ich eigentlich denke), dann müssten die weiteren Fälle sein:
3. Fall: x [mm]\not\in[/mm] A, x [mm]\in[/mm] B
Dann ist   [mm]|x_A(x)-x_B(x)|=|0-1|=1[/mm] und , wegen x [mm]\in[/mm] A [mm]\Delta[/mm] B, ist auch [mm]x_{A \Delta B}(x)=1.[/mm]

4. Fall: Noch ein Fall: x [mm]\not\in[/mm] A, x [mm]\not\in[/mm] B
Dann ist   [mm]|x_A(x)-x_B(x)|=|0-0|=0[/mm] und , wegen x [mm]\notin[/mm] A [mm]\Delta[/mm] B, ist auch [mm]x_{A \Delta B}(x)=0.[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de