www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Induktion
Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:31 Fr 20.01.2006
Autor: peterpan99

Aufgabe
  [mm] \forall n\varepsilon\IN: \summe_{i=1}^{2^n} [/mm] 1/i  [mm] \ge [/mm] n/2

Ich versuche mich schon etwas länger an dieser Aufgabe und würde gerne einen Tipp haben. Also für n=1 klappts dann für

[mm] \forall n\varepsilon\IN: \summe_{i=1}^{2^{n+1}} [/mm] 1/i  [mm] \ge [/mm] (n+1)/2

Mein Ansatz:

[mm] \forall n\varepsilon\IN: \summe_{i=1}^{2^n} [/mm] 1/i  + [mm] \summe_{k=1}^{2^n} 1/({2^n}+k) \ge [/mm] (n+1)/2

Habe mir überlegt wie ich ab [mm] 1/2^n [/mm] bis [mm] 1/(2^{n+1}) [/mm] also Summer ausdrücken kann. Da [mm] 1/(2^{n+1}) [/mm] = [mm] 1/(2^n*2) [/mm] = [mm] 1/(2^n+2^n) [/mm] ist!  
Leider komme ich nicht weiter bzw. ist vielleicht vollkommen falscher Ansatz. Bitte um einen guten Tipp ;-)
Schönen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Fr 20.01.2006
Autor: Hanno

Hallo!

> Mein Ansatz:

> $ [mm] \forall n\varepsilon\IN: \summe_{i=1}^{2^n} [/mm] $ 1/i  + $ [mm] \summe_{k=1}^{2^n} 1/({2^n}+k) \ge [/mm] $ (n+1)/2

Das sieht gut aus! [ok]
Du kannst nun die zweite Summe über [mm] $\sum_{k=1}^{2^n}\frac{1}{2^n+2^n}$ [/mm] und die erste nach Induktionsvoraussetzung durch [mm] $\frac{n}{2}$. [/mm] Dann steht das Resultat auch schon da.


Liebe Grüße,
Hanno

Bezug
                
Bezug
Induktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:46 Fr 20.01.2006
Autor: peterpan99

Ich stehe da noch ein wenig auf dem Schlauch! Also letzteres ist klar aber wie kann ich [mm] \sum_{k=1}^{2^n}\frac{1}{2^n+2^n} [/mm] durch [mm] \sum_{k=1}^{2^n}\frac{1}{2^n+k} [/mm] ersetzen? Oder wie darf ich es verstehen?
Danke

Bezug
                        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 20.01.2006
Autor: Bastiane

Hallo!

> Ich stehe da noch ein wenig auf dem Schlauch! Also
> letzteres ist klar aber wie kann ich
> [mm]\sum_{k=1}^{2^n}\frac{1}{2^n+2^n}[/mm] durch
> [mm]\sum_{k=1}^{2^n}\frac{1}{2^n+k}[/mm] ersetzen? Oder wie darf ich
> es verstehen?
> Danke

Also, du kannst es nicht direkt ersetzen, sondern dadurch abschätzen. Denn k ist ja [mm] \le 2^n, [/mm] also ist [mm] $2^n+k\le 2^n+2^n$ [/mm] und somit der Kehrbruch [mm] \ge. [/mm] Also kannst du es abschätzen. Ist das verständlich formuliert?

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Induktion: Fehler im System?
Status: (Frage) für Interessierte Status 
Datum: 18:28 Sa 21.01.2006
Autor: peterpan99

Sorry aber nochmal:
Es steht dort dann:

[mm] \frac{n}{2} [/mm] + [mm] \sum_{k=1}^{2^n}\frac{1}{2^n+2^n} \le \frac{n}{2} [/mm] + [mm] \frac{1}{2} [/mm]

Daraus folgt:

[mm] \frac{n}{2} [/mm] + [mm] \frac{1}{2^n+2^n} \le \frac{n}{2} [/mm] + [mm] \frac{1}{2} [/mm]

Daraus folgt:

[mm] \frac{1}{2^n+2^n} \le \frac{1}{2} [/mm]

Meiner Meinung ist es damit zu klein abgeschätzt. Wo habe ich jetzt falsch gedacht?
Danke für eure Mühe ....

Bezug
                                        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Sa 21.01.2006
Autor: peterpan99

also [mm] \le [/mm] muss ein  [mm] \ge [/mm] sein laut Aufgabenstellung!

Bezug
                                        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 Sa 21.01.2006
Autor: peterpan99

Denkfehler gefunden und danke für´s mitdenken ...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de