www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Induktion
Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Beweis
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 07.11.2006
Autor: Student2007

Sei n Element von N das Produkt von r
(nicht notwendig verschiedenen Primzahlen und d die Anzahl
aller Teiler von n. Zeige d ist kleiner, gleich [mm] 2^r [/mm]
hat jemand ahnung von voll. Induktion?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Di 07.11.2006
Autor: Bastiane

Hallo Student2007!

Deine Frage ist sehr schlecht leserlich, kannst du sie nicht bitte so abtippen, wie sie auf dem Zettel steht, incl. der Formeln (wir haben hier einen sehr schönen Formeleditor!).

Abgesehen davon solltest du wenigstens ein bisschen Ahnung von vollständiger Induktion haben, wir sind hier nämlich nicht dafür zuständig, jedem die kleinsten Grundlagen zu erklären. Schau dich doch mal im Forum um, da findest du viele Fragen zur Induktion und sicher auch einige, die von Grund auf erklären.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Di 07.11.2006
Autor: Student2007

Sei n Element von N das Produkt von r
(nicht notwendig verschiedenen Primzahlen und d die Anzahl
aller Teiler von n. Zeige d ist kleiner, gleich 2 hoch r
hat jemand ahnung von voll. Induktion?

ein Tipp wär aber gut........
der Text lautet leider so...........
d  [mm] \le [/mm]
          [mm] 2^r [/mm]

Bezug
        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Di 07.11.2006
Autor: DaMenge

Hi,

also sei n beliebig und man führe Induktion nach r
(Induktionsanfang ist klar, oder?)

kleiner Hinweis vorweg:
also [mm] $n=p_1*p_2*\ldots p_r$ [/mm] das Produkt aus Primzahlen [mm] $P=\{ p_i \}_{\forall i=1..r}$ [/mm] (P soll die Menge der Symbole der Primzahlen sein, also hat wirklich r Elemente auch wenn Primzahlen doppelt vorkommen), dann kann man zwei "komplementäre" Teiler S und T ja darstellen als : n=S*T , wobei [mm] $P=S\mathaccent\cdot\cup [/mm] T$
(sollte das symbol für die "disjunkte Vereinigung" werden)

So, angenommen die Formel sei bewiesen für r, jetzt kommt eine Primzahl hinzu, also [mm] $n'=p_1*\ldots *p_r*p_{r+1}$ [/mm]
wie groß ist nun die Anzahl der Teiler?
naja, alle Teiler T, die vorher Teiler waren, sind es jetzt auch noch und zwar mit : n'=T*(T')
wobei T einer der maximal [mm] 2^r [/mm] Teiler ist, der vorher schon da waren und (T') ist ein Teiler, der den Primfaktor [mm] p_{r+1} [/mm] enthalten muss, also auch maximal [mm] 2^r [/mm] viele neue Teiler (T')

(und dies sind wirklich alle Teiler, weil ein Teiler von n' entweder [mm] P_{r+1} [/mm] enthalten muss (dann ist er als T' mitgezählt worden, weil sein komplementärer Teiler diesen Primfaktor ja nicht enthält) oder eben nicht, dann ist er als Teiler T mitgezählt worden.)

damit ist [mm] $d\le 2^r +2^r=2*2^r=2^{r+1}$ [/mm]

so, jetzt noch ein kleiner Hinweis, warum man mit der Methode wirklich alle Zahlen n bekommt und man ist fertig..

viele grüße
DaMenge

Bezug
        
Bezug
Induktion: hi
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:14 Sa 11.11.2006
Autor: Student2007

hast du das auch so aufschreiben das das ein Nicht-Mathematiker
versteht?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de