www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Induktion (?)
Induktion (?) < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion (?): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Di 26.10.2004
Autor: DieJenny1984

Die Aufgabe:
Gegeben seien positive reelle Zahlen [mm] a_{1},...,a_{n}. [/mm] Es gelte

[mm] a_{1}*a_{2} [/mm] > 1 , [mm] a_{2}*a_{3} [/mm] > 1 ,..., [mm] a_{n-1}*a_{n} [/mm] > 1 und
[mm] a_{n}*a_{1} [/mm] > 1.

Gilt dann notwenidigerweise  [mm] \produkt_{i=1}^{n} a_{j}:=a_{1}*a_{2}*...*a_{n} [/mm] > 1? (Beweis oder Gegenbeispiel)

Hallo!
Meine Frage ist eigentlich nur, ob ich diese Aufgabe mit Induktion lösen kann. Induktionsanfang mit n=2 und dann Rest.
Gruß Jenny

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktion (?): Jein...
Status: (Antwort) fertig Status 
Datum: 00:17 Mi 27.10.2004
Autor: Marcel

Liebe Jenny,

> Die Aufgabe:
>  Gegeben seien positive reelle Zahlen [mm]a_{1},...,a_{n}.[/mm] Es
> gelte
>  
> [mm]a_{1}*a_{2}[/mm] > 1 , [mm]a_{2}*a_{3}[/mm] > 1 ,..., [mm]a_{n-1}*a_{n}[/mm] > 1
> und
>  [mm]a_{n}*a_{1}[/mm] > 1.

>  
> Gilt dann notwenidigerweise  [mm]\produkt_{i=1}^{n} a_{j}:=a_{1}*a_{2}*...*a_{n}[/mm]
> > 1? (Beweis oder Gegenbeispiel)

Nachdem ich zunächst die Bedingung [mm] $a_n*a_1>1$ [/mm] überlesen hatte, wollte ich dir ein Gegenbeispiel angeben. Leider ging es schief, weil in dem Gegenbeispiel eben [mm] $a_n*a_1<1$ [/mm] gegolten hätte! Gut, dass ich das noch bemerkt habe! ;-)

Es ist aber klar:
Die Aussage über das Produkt gilt notwendigerweise. Ich würde dafür zwei Fälle betrachten (beachte hierbei, dass die [mm] $a_1,...,a_n$ [/mm] alle positiv sind):

1. Fall:
Ist $n$ gerade, so gilt doch sicherlich:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1*a_2}_{>1}*\underbrace{a_3*a_4}_{>1}*....*\underbrace{a_{n-1}*a_n}_{>1}[/m].
Und, was sagt uns das nun über das Produkt im Falle $n$ gerade?
(Du kannst natürlich auch mit $n=2$ anfangen und dann den Induktionsschritt $n [mm] \to [/mm] n+2$ durchführen; deswegen habe ich deine Frage mit Jein beantwortet. :-))

2.Fall:
Ist $n$ ungerade, so muss [mm] $a_1 \ge [/mm] 1$ oder [mm] $a_n \ge [/mm] 1$ gelten.
(Denn: Wäre [mm] $a_1<1$ [/mm] und [mm] $a_n<1$, [/mm] so wäre auch [mm] $a_n*a_1<1$ [/mm] im Widerspruch zur Voraussetzung.)
Fall 2a):
Ist [mm] $a_1 \ge [/mm] 1$ (und $n$ ungerade), so gilt:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1}_{\ge 1}*\underbrace{a_2*a_3}_{>1}*\underbrace{a_4*a_5}_{>1}*....*\underbrace{a_{n-1}*a_n}_{>1}[/m]

Fall 2b):
Ist [mm] $a_n \ge [/mm] 1$ (und $n$ ungerade), so gilt:
[m]\produkt_{j=1}^n{a_j} =\underbrace{a_1*a_2}_{>1}*\underbrace{a_3*a_4}_{>1}*....*\underbrace{a_{n-2}*a_{n-1}}_{>1}*\underbrace{a_n}_{\ge 1}[/m]

Was erkennt man dann an dem Produkt im Falle 2a) bzw. 2b) ?

Das ganze läßt sich aber bestimmt auch per Induktion hinschreiben für diese Fälle und dann jeweils mit dem Induktionsschritt $n [mm] \to [/mm] n+2$, also könnte man deine Frage auch mit "Ja" beantworten!
Ich habe jetzt nach einem Weg gesucht, das ganze per Induktion ohne Fallunterscheidung zu machen (und dann nur mit Induktionsschritt $n [mm] \to [/mm] n+1$); bisher sehe ich nicht, wie und ob das überhaupt geht. Aber so schlimm ist es ja auch nicht, das ganze in zwei Fälle (bzw. drei, weil der zweite Fall ja wieder in zwei Fälle zerlegt wird ;-)) zu zerlegen. :-)

Liebe Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de