www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Induktion
Induktion < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Mo 06.10.2008
Autor: ONeill

Hallo!

Wenn ich eine Spule habe, die in einem Winkel [mm] \alpha [/mm] vom B Feld durchsetzt wird, dann lässt sich die induzierte Spannung berechnen, je nachdem ob sich die durchsetzte Fläche oder sonst was ändert.
Das berechne ich dann so:

[mm] A=A_0*cos(\alpha) [/mm]
A ist dabei die effektiv durchsetzte Fläche, [mm] A_0 [/mm] die Fläche der Spule.
[mm] \Phi=A*B=A_0*B*cos(\alpha] [/mm]
Induktionsgesetz
[mm] U=-n*\bruch{d\Phi}{dt}=-n*\bruch{d(A_0*B*cos(\alpha))}{dt} [/mm]

Das ist erstaml die Grundformel. Wenn ich nun sage die durchsetzte Fläche ändert sich mit der Zeit bekomme ich mit [mm] \alpha=\omega*t [/mm]

U=nAB [mm] \omega sin(\omega [/mm] t)
Würde sich hingegen B ändern komme ich auf

U=-n*A* [mm] cos(\alpha) *\bruch{dB}{dt} [/mm]

Dann könnte man für B noch irgendwas einsetzen, je nachdem wie B sich ändert und würde das wieder nach der Zeit ableiten stimmt das?

Und wenn sich nun beides Ändert, Fläche und B Feld dann leite ich beides per Produktregel ab?
Da kann man doch sicherlich nette Spielereien anstellen dass sich die Änderungen so ausgleichen dass man einen noch größeren Wert für die max Spannung bekommt bzw dass gar keine Spannung induziert wird?

Danke für jede Hilfe!

Gruß ONeill

        
Bezug
Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:19 Di 07.10.2008
Autor: rainerS

Hallo ONeill!

> Hallo!
>  
> Wenn ich eine Spule habe, die in einem Winkel [mm]\alpha[/mm] vom B
> Feld durchsetzt wird, dann lässt sich die induzierte
> Spannung berechnen, je nachdem ob sich die durchsetzte
> Fläche oder sonst was ändert.
>  Das berechne ich dann so:
>  
> [mm]A=A_0*cos(\alpha)[/mm]
>  A ist dabei die effektiv durchsetzte Fläche, [mm]A_0[/mm] die
> Fläche der Spule.
>  [mm]\Phi=A*B=A_0*B*cos(\alpha][/mm]
>  Induktionsgesetz
>  
> [mm]U=-n*\bruch{d\Phi}{dt}=-n*\bruch{d(A_0*B*cos(\alpha))}{dt}[/mm]
>  
> Das ist erstaml die Grundformel. Wenn ich nun sage die
> durchsetzte Fläche ändert sich mit der Zeit bekomme ich mit
> [mm]\alpha=\omega*t[/mm]
>  
> U=nAB [mm]\omega sin(\omega[/mm] t)
>  Würde sich hingegen B ändern komme ich auf
>
> U=-n*A* [mm]cos(\alpha) *\bruch{dB}{dt}[/mm]
>  
> Dann könnte man für B noch irgendwas einsetzen, je nachdem
> wie B sich ändert und würde das wieder nach der Zeit
> ableiten stimmt das?

Ja.

> Und wenn sich nun beides Ändert, Fläche und B Feld dann
> leite ich beides per Produktregel ab?

Ja.

>  Da kann man doch sicherlich nette Spielereien anstellen
> dass sich die Änderungen so ausgleichen dass man einen noch
> größeren Wert für die max Spannung bekommt bzw dass gar
> keine Spannung induziert wird?

Stell dir ein rotierendes Magnetfeld vor. Wenn die Spule mit dem Feld mitrotiert, ist das B-Feld durch die Fläche A konstant, es wird also keine Spannung induziert.

Das Induktionsgesetz, wie du es hier hingeschrieben hast, ist eine Vereinfachung für den Fall, dass das B-Feld nicht ortsabhängig ist. Im Allgemeinen muss man statt des Skalarproduktes [mm] $\vec{B}*\vec{A}$ [/mm] das Integral von [mm] $\vec{B}$ [/mm] über die Fläche nehmen:

[mm] \integral\limits_{\partial A} \vec{E}*d\vec{s} = -\bruch{d}{dt} \integral\limits_A \vec{B}*d\vec{A} [/mm]

Die linke Seite ergibt für eine Leiterschleife gerade die induzierte Spannung.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de