Induktion Bi..Koeff < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:20 So 28.06.2009 | Autor: | huibuh |
Hallo...
ich sitz hier schon den ganzen tag dran aber komm echt nich weiter. Helft mir!
Seien n,k natürliche Zahlen mit n [mm] \ge [/mm] k . Man beweise:
[mm] \vektor{n+1 \\ k+1} [/mm] = [mm] \summe_{m=k}^{n} \vektor{m \\ k}
[/mm]
Ich kann ja mal meine ansätze drunter schreiben ;)
Also Induktionsanfang n=0 ist wahr
vorraussetzung : gilt für n
schritt: n->n+1
[mm] \summe_{m=k}^{n+1} \vektor{m \\ k} [/mm] = [mm] \summe_{m=k}^{n} \vektor{m \\ k} [/mm] + [mm] \vektor{n \\ k}
[/mm]
= [mm] \vektor{n \\ k} [/mm] + [mm] \vektor{n+1 \\ k} [/mm] =IV= [mm] \vektor{n+1 \\ k+1} [/mm] + [mm] \vektor{n+1 \\ k}
[/mm]
[mm] =\bruch{(n+1)!}{(k+1)!(n-k)!} [/mm] + [mm] \bruch{(n+1)!}{k!(n+1-k)!}
[/mm]
= [mm] \bruch{(n+1)!(n+1-k)!+(n+1)!(k+1)!(n-k)!}{(k+1)!(n-k)!k!(n+1-k)!}
[/mm]
so...und jetzt hab ich so meine probleme mit dem kürzen
danke schonmal im vorraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:37 So 28.06.2009 | Autor: | pelzig |
> Seien n,k natürliche Zahlen mit n [mm]\ge[/mm] k . Man beweise:
> [mm]\vektor{n+1 \\ k+1}[/mm] = [mm]\summe_{m=k}^{n} \vektor{m \\ k}[/mm]
> (...) schritt: n->n+1
> [mm]\summe_{m=k}^{n+1} \vektor{m \\ k}=\summe_{m=k}^{n} \vektor{m \\ k}+\vektor{n\red{+1} \\ k}\stackrel{\text{IV}}{=}\vektor{n+1 \\ k+1}[/mm] + [mm]\vektor{n+1 \\ k}=\bruch{(n+1)!}{(k+1)!(n-k)!}+\bruch{(n+1)!}{k!(n+1-k)!}[/mm]
>
> = [mm]\bruch{(n+1)!(n+1-k)!+(n+1)!(k+1)!(n-k)!}{(k+1)!(n-k)!k!(n+1-k)!}[/mm]
Der Hauptnenner ist [mm](k+1)!(n+1-k)![/mm], d.h. nach Erweitern und Zusammenfassen bleibt [mm] $$\frac{(n+1)!(n+1-k)+(n+1)!(k+1)}{(k+1)!(n+1-k)!}=\frac{(n+2)!}{(k+1)!(n+1-k)!}=\vektor{n+2\\k+1}$$Gruß, [/mm] Robert
|
|
|
|