www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis bei k³
Induktionsbeweis bei k³ < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis bei k³: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Mo 12.10.2009
Autor: Nelly12345

Aufgabe
Beweisen Sie:

[mm] \summe_{i=1}^{n} [/mm] k³= [mm] \bruch{n²(n+1)²}{4} [/mm]

Soweit hab ich bis jetzt die Induktion verstanden. Ich komm beim umformen aber nicht weiter.

mein Ansatz ohne Induktionsanfang:

zu zeigen ist (richtig?vl. hier schon der fehler):

[mm] \summe_{i=1}^{n+1} [/mm] k³ + (n+1)³ = [mm] \bruch{(n+1)^2[(n+1)+1]^2}{4} [/mm] = [mm] \bruch{(n+1)²(n+2)²}{4} [/mm]

Lösung:

[mm] \summe_{i=1}^{n+1} [/mm] k³  [mm] =\summe_{i=1}^{n} [/mm] k³ + (n+1)³ = [mm] \bruch{n²(n+1)²}{4} [/mm] + [mm] \bruch{4(n+1)²}{4} [/mm] = [mm] \bruch{n²(n+1)²+4(n+1)³}{4} [/mm]

da habe ich jetzt (n+1)² ausgeklammert im Zähler:

= [mm] \bruch{(n+1)²[n²+4n(n+1)]}{4} [/mm] = [mm] \bruch{(n+1)²(n²+4n+1)}{4} [/mm]

jetzt hab ich keine Ahnung wie ich auf das komme was ich bei zu zeigen geschrieben habe.

Wäre über einen kurzen Tipp schon sehr dankbar,
Gruß Lukas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Induktionsbeweis bei k³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Mo 12.10.2009
Autor: zahllos

Hallo,

meinst du s = 3 ?
Fasse den Ausdruck [mm] \frac{n^2(n+1)^2}{4}+(n+1)^2 [/mm] zu einem Bruch zusammen, dann erhälst du die Behauptung!

Bezug
        
Bezug
Induktionsbeweis bei k³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Mo 12.10.2009
Autor: zahllos

Sorry, jetzt bin ich auch mit den Exponenten durcheinandergekommen:
[mm] \frac{n^2(n+1)^2}{4}+(n+1)^3 [/mm] = [mm] \frac{n^2(n+1)^2+4(n+1)^3}{4}=\frac{(n+1)^2(n^2+4n+4)}{4}=\frac{(n+1)^2(n+2)^2}{4} [/mm]



Bezug
        
Bezug
Induktionsbeweis bei k³: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 12.10.2009
Autor: schachuzipus

Hallo Lukas,

> Beweisen Sie:
>  
> [mm]\summe_{i=1}^{n}[/mm] k³= [mm]\bruch{n²(n+1)²}{4}[/mm]
>  Soweit hab ich bis jetzt die Induktion verstanden. Ich
> komm beim umformen aber nicht weiter.
>  
> mein Ansatz ohne Induktionsanfang:
>  
> zu zeigen ist (richtig?vl. hier schon der fehler):
>  
> [mm]\summe_{i=1}^{n+1}[/mm] k³ + (n+1)³ =
> [mm]\bruch{(n+1)^2[(n+1)+1]^2}{4}[/mm] = [mm]\bruch{(n+1)²(n+2)²}{4}[/mm]

Puh, zum einen muss doch an der Summe der Laufindex k sein und nicht i!

Zum anderen ist im Induktionsschritt zu zeigen, dass [mm] $\sum\limits_{k=1}^{n+1}k^3=\frac{(n+1)^2\cdot{}(n+2)^2}{4}$ [/mm] gilt

Dazu schreibe die Summe [mm] $\sum\limits_{k=1}^{n+1}k^3$ [/mm] so um, dass du die Induktionsvoraussetzung (die da lautet?) benutzen kannst:

[mm] $\sum\limits_{k=1}^{n+1}k^3=\left(\sum\limits_{k=1}^{\red{n}}k^3\right)+(n+1)^3$ [/mm]

Auf die Summe kannst du nun die Induktionsvoraussetzung anwenden!

[mm] $...=\frac{n^2\cdot{}(n+1)^2}{4}+(n+1)^3$ [/mm]

Das forme nun weiter um, bis am Ende da steht [mm] $...=\frac{(n+1)^2(n+2)^2}{4}$ [/mm]


>  
> Lösung:

Huch?

Ab hier ist wieder was richtiges ...

Du solltest die Exponenten mit dem Dach ^ machen,, sonst werden sie nicht angezeigt!


>  
> [mm]\summe_{i=1}^{n+1}[/mm] k³  [mm]=\summe_{i=1}^{n}[/mm] k³ + (n+1)³ [/mm] =
> [mm] $\bruch{n^2(n+1)^2}{4} [/mm] + [mm] \bruch{4(n+1)^{\red{2}}}{4}$ [/mm] [notok]

Hier steht im Quelltext ein "hoch 2", das muss aber "hoch 3" sein!

> = [mm]\bruch{n^2(n+1)^2+4(n+1)^3}{4}[/mm]

Hier stimmt's wieder laut Quelltext ...

[kopfkratz3]

Schreibe sorgfältiger auf!

>  
> da habe ich jetzt (n+1)² ausgeklammert im Zähler: [ok]

richtige Idee!

>  
> = [mm] $\bruch{(n+1)^2[n^2+4\red{n}(n+1)]}{4}=\bruch{(n+1)^2(n^2+4n+1)}{4}$ [/mm]

Das n ist zuviel!

Im Zähler muss stehen [mm] $(n+1)^2\cdot{}\left[n^2+4\cdot{}(n+1)\right]$ [/mm]

Fasse das mal richtig zusammen und du kommst auf die zu zeigende rechte Seite der Induktionsbeh,

>  
> jetzt hab ich keine Ahnung wie ich auf das komme was ich
> bei zu zeigen geschrieben habe.
>  
> Wäre über einen kurzen Tipp schon sehr dankbar,
>  Gruß Lukas
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
                
Bezug
Induktionsbeweis bei k³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:55 Mo 12.10.2009
Autor: Nelly12345

Danke danke euch beide, wenn ich jetzt noch die Funktion "Frage beantwortet" finde mach ich das ganz schnell wieder zu hier.

Lukas

Bezug
                        
Bezug
Induktionsbeweis bei k³: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Mo 12.10.2009
Autor: schachuzipus

Hallo nochmal,

ist schon erledigt ;-)

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de