www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Induktionsbeweis f. Primzahlen
Induktionsbeweis f. Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis f. Primzahlen: Problem mit Abschaetzung
Status: (Frage) beantwortet Status 
Datum: 23:21 Mi 25.04.2007
Autor: neuling_hier

Aufgabe
Man zeige:
Fuer alle [mm] $n\in\IN$ [/mm] gilt: Die Anzahl der Primzahlen [mm] $\leq [/mm] n$ ist
nicht groesser als [mm] $\frac{n}{3} [/mm] + 2$.

Hallo liebes Forum,

Ich verzweifle mittlerweile an o.g. Aufgabe und hoffe, jemand kann mir hier helfen.

Zeigen will ich die Behauptung per (Abschnitts-)induktion ueber $n$. Mein Problem ist, daß ich im Induktionsschritt beim Übergang von $n$ auf $n+1$ stets bei der Abschaetzung zuviel hinzu addiere.

Mein Beweis bislang:

Fuer alle [mm] $n\in\IN$ [/mm] sei im folgenden $P(n)$ die Anzahl der Primzahlen [mm] $\leq [/mm] n$.

Die Faelle [mm] $n\in\{1, ..., 4\}$ [/mm] sind klar, und ich erspare mir etwas Schreibarbeit, da ich die Induktion ab $n=5$ beginnen will (da ab $n=5$ die Zahl $n-1$ keine Primzahl ist, was im Beweis benutzt wird).

Fuer $n [mm] \geq [/mm] 5$ zeige ich per Abschnittsinduktion die staerkere Behauptung, dass

  $P(n) [mm] \leq \frac{n-1}{3} [/mm] + 2$.

Die Behauptung folgt dann.

I.A.: Fuer $n = 5$ sind die Primzahlen [mm] $\leq [/mm] n$ die Zahlen 2, 3 und 5,
also $P(n) = 3 [mm] \leq \frac{4}{3} [/mm] + 2 = [mm] \frac{n-1}{3} [/mm] + 2$.

I.V.: Sei [mm] $n\in\IN_{\geq 5}$ [/mm] so, dass fuer alle $n' [mm] \leq [/mm] n$ gilt: $P(n') [mm] \leq \frac{n'-1}{3} [/mm] + 2$.

I.S.: Fall 1: $n+1$ ist keine Primzahl. Dann gilt:

  $P(n+1) = P(n) [mm] \leq_{I.V.} \frac{n-1}{3} [/mm] + 2 < [mm] \frac{n}{3} [/mm] + 2$.

Fall 2: $n+1$ ist Primzahl. Dann ist $n+1$ ungerade (da sonst durch 2
teilbar). Folglich ist $n$ gerade und keine Primzahl. Also gilt:

$P(n+1) = P(n - 1) + 1 [mm] \leq_{I.V.} (\frac{n-2}{3} [/mm] + 2) + 1 = ...$

- Tja, und hier knallt's. Es ist bereits [mm] $\frac{n-2}{3} [/mm] + 3 [mm] \geq \frac{n}{3} [/mm] + 2$ :-(

Kann jemand helfen?

Fuer einen Tipp waere ich super dankbar!

        
Bezug
Induktionsbeweis f. Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:32 Do 26.04.2007
Autor: komduck

Hallo,

wir streichen die Vielfachen von ein paar primzahlen und zählen was übrig bleibt.
z.B p=2 wir bilden Gruppen von 2 Zahlen. Jede zweite
ist gerade dann haben wir die Abschäzung < [mm] \bruch{1}{2} [/mm] * n + 1
wenn wir bei 6 Zahlen die durch 2 oder durch 3 teilbaren Zahlen streichen
bleiben 2 übrig. Bei 30 Zahlen bei denen wir vielfache von 2,3,5
streichen bleiben 9 übrig. Das wäre dann [mm] \bruch{3}{10} [/mm] * n + konst.
Die Konstante entsteht weil wir in der ersten Gruppe die Zahlen nicht
streichen. Nun muß man eine Induktion daraus machen. Es bietet
sich ein Induktionschrit von n nach n+k an. k ist die Gruppengröße.
Der Induktionsanfang ist dann n=0,1,2... k-1

mfg komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de