www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Induktionsbeweis mit Summen
Induktionsbeweis mit Summen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis mit Summen: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 16:02 Fr 25.10.2013
Autor: barischtoteles

Aufgabe
Zeigen Sie mit vollständiger Induktion:

(b) Für n [mm] \in \IN [/mm] und [mm] \alpha \in \IR [/mm] ist | [mm] sin(n\alpha)| \le [/mm] n | [mm] sin(\alpha) [/mm] | .

Hinweis: Man kann [mm] sin(\beta [/mm] + [mm] \gamma) [/mm] = [mm] sin(\beta) cos(\gamma) [/mm] + [mm] cos(\beta) sin(\gamma) [/mm] verwenden.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, tut mir wirklich Leid, dass das so viele Aufgaben sind, aber ich bin erst seit kurzem an der Uni und wirklich überfordert, und meine Prüfungszulassung hängt von diesen Aufgaben ab.

Ich bitte um ausführlich erklärende Hilfe!


        
Bezug
Induktionsbeweis mit Summen: Dreiecksungleichung
Status: (Antwort) fertig Status 
Datum: 16:35 Fr 25.10.2013
Autor: Loddar

Hallo barischtoteles!


Induktionsanfang und Induktionsvoraussetzung überlasse ich mal Dir.


Im Induktionsschritt ist also zu zeigen:   [mm] $\left|  \sin[(n+1)*\alpha)  \right| [/mm] \ [mm] \ge [/mm] \ [mm] (n+1)*\left|\sin(\alpha)\right|$ [/mm]


Es gilt:

[mm] $\left|  \sin[(n+1)*\alpha)  \right| [/mm] \ = \ [mm] \left|  \sin(n*\alpha+\alpha)  \right|$ [/mm]


Nun wenden wir den Tipp aus der Aufgabenstellung an:

$= \ [mm] \left|  \sin(n*\alpha)*\cos(\alpha)+\cos(n*\alpha)*\sin(\alpha)  \right|$ [/mm]


Nun wenden wir die Dreiecksungleichung $|a+b| \ [mm] \le [/mm] \ |a|+|b|$ an:

[mm] $\red{\le} [/mm] \ [mm] \left|  \sin(n*\alpha)*\cos(\alpha)\right|+\left|  \cos(n*\alpha)*\sin(\alpha)  \right|$ [/mm]


Es gilt: $|a*b| \ = \ |a|*|b|$:

$= \ [mm] \red{\left|  \sin(n*\alpha)\right|}*\blue{\left|\cos(\alpha)\right|}+\blue{\left|  \cos(n*\alpha)\right|}*\left|\sin(\alpha)  \right|$ [/mm]

Auf den roten Term wenden wir nun die Induktionsvoraussetzung an.
Die blauen Terme lassen sich aufgrund der Funktionseigenschaften der cos-Funktion mit $... \ [mm] \le [/mm] \ 1$ abschätzen.

Damit wird dann:

[mm] $\red{\le} [/mm] \ [mm] \red{n*\left|  \sin(\alpha)\right|}*\blue{1}+\blue{1}*\left|\sin(\alpha)  \right|$ [/mm]


Den "Rest" überlasse ich nun wieder Dir.


Gruß
Loddar

Bezug
                
Bezug
Induktionsbeweis mit Summen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Fr 25.10.2013
Autor: barischtoteles

[mm] |sin(\alpha) [/mm] | ausgeklammert ergibt das dann (n+1) * [mm] |sin(\alpha) [/mm] | und somit ist die behauptung bewiesen

vielen vielen dank ihr seid eine riesen hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de