www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Induktionsformel schaffen
Induktionsformel schaffen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsformel schaffen: Ausgang für Induktion unklar
Status: (Frage) beantwortet Status 
Datum: 01:37 Di 03.11.2009
Autor: laco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
die Anzahl der rekursiven Aufrufe bei den Tribonaccizahlen soll mit Induktion bewiesen werden.
Folge der Aufrufe sieht wie folgt aus für n>3:
3, 6, 9, 12 etc. Also: 3*(n-3)
Wie geht man am besten vor, wenn man das mit Induktion beweisen will?
für n= 4 (ist das erste Glied der Folge) ist es wahr.
Wie genau setze ich jetzt aber (n+1)?

        
Bezug
Induktionsformel schaffen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:40 Di 03.11.2009
Autor: Fulla

Hallo laco,

kannst du die Aufgabenstellung noch genauer angeben? Wie sind die Tribonacci-Zahlen definiert? Und was ist die Anzahl der rekursiven Aufrufe?

Lieben Gruß,
Fulla

Bezug
                
Bezug
Induktionsformel schaffen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Di 03.11.2009
Autor: laco

Die Tribonacci-Zahlen sind so definiert: f(n) = f(n-1) + f(n-2) + f(n-3)
Rekursiver Auruf ist, wenn vorher bereits berechnete Werte erneut berechtnet bzw. benutzt werden.
f(4) = f(3) + f(2) + f(1)
Hast Du eine Idee?

Bezug
        
Bezug
Induktionsformel schaffen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:52 Sa 07.11.2009
Autor: reverend

Hallo laco, etwas verspätet noch ein [willkommenmr]

>  Folge der Aufrufe sieht wie folgt aus für n>3:
>  3, 6, 9, 12 etc.

Wie kommst Du denn darauf?

Für [mm] a_4 [/mm] wird die Formel einmal aufgerufen.
Für [mm] a_5 [/mm] einmal und einmal rekursiv für [mm] a_4, [/mm] also zweimal.
Für [mm] a_6 [/mm] einmal und zweimal für [mm] a_5 [/mm] (s.o.) und einmal für [mm] a_4, [/mm] also viermal.

Schon hier stellt sich die Frage, wie der Algorithmus denn programmiert wird. Natürlich ist es nicht effektiv, [mm] a_4 [/mm] für die Berechnung von [mm] a_5 [/mm] zu bestimmen und dann noch einmal separat, wenn [mm] a_4 [/mm] benötigt wird.

Trotzdem müssen wir (wegen der vorausgesetzten Rekursivität) ja annehmen, dass für jedes neue [mm] a_n [/mm] nur die Bildungsregel und die Werte [mm] a_1, a_2, a_3 [/mm] existieren, also keine weiteren [mm] a_i [/mm] zwischengespeichert werden. Das würde in der Praxis natürlich niemand so machen, zumal es genügt, die jeweils letzten drei Werte vorher zu speichern!

Gehen wir nun aber trotzdem davon aus, dass für die Berechnung von [mm] a_n [/mm] (mit n>3) [mm] a_{n-1}, a_{n-2} [/mm] und [mm] a_{n-3} [/mm] jeweils nur einmal bestimmt werden müssen (sofern Du das programmieren kannst). Das ließe sich anders annehmen, aber dann mit anderen Ergebnissen.

Am besten skizzierst Du also erst einmal Deine Rekursionsstruktur; sonst ist die Anzahl der Aufrufe nicht allgemein zu bestimmen!

lg
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de