www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Infimum
Infimum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Di 27.06.2006
Autor: ANjaan

Aufgabe
Jede nichtleere, nach unten beschränkte Teilmenge der reellen Zahlen besitzt ein Infimum (d. h. eine grösste untere Schranke).
Bemerkung: Für [mm] M\subset\IC [/mm]   R nichtleer und nach unten beschränkt betrachten Sie
M*:={−x | x ∈ M}. Dann ist –sup(M*) größte untere Schranke von M.


Hallo ihr alle da draußen im MatheRaum, ich grüße euch! Ich brüte hier gerade über der Aufgabe und komme damit in keinster Weise klar.

Was könnt ihr mir denn so an Tips geben? Ich bin auch für den kleinsten Anstoß dankbar!

Mit ganz lieben Grüßen und vielem Dank vorab
eure ANjaan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Infimum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Di 27.06.2006
Autor: just-math

Hallo aus den Weiten des Mathe-Raumes,

sei also [mm] M\subseteq \IR [/mm] und  sein [mm] L\in \IR [/mm] so, dass für alle [mm] x\in [/mm] M [mm] L\leq [/mm] x gilt.

Dann heisst ja [mm] I\in\IR [/mm] Infimum zu M genau dann, wenn

(1) [mm] \forall x\in [/mm] M [mm] I\leq [/mm] x und weiterhin

(2) [mm] \forall y\in \IR\:\: ((\forall x\in M\: y\leq x)\:\Longrightarrow\: y\leq [/mm] I)

Annahme: M hat kein Infimum. Dann existiert zu jeder unteren Schranke L von M ein L'>L, das auch untere Schranke von M ist.
Wir definieren eine aufsteigende Folge von unteren Schranken für M, hierzu benotigen wir evtl. das Axiom of Choice (wie heisst den da
auf Deutsch ? ). Dann können wir zeigen, dass dies eine Cauchy-Folge sein muss,und Cauchy-Folgen in [mm] \IR [/mm] sind konvergent.

hey, das war mal so eine idee dazu, es geht sicher auch anders, aber so solltest du klarkommen.

Viele Grüsse

just-math

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de