www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Infimum und Supremum
Infimum und Supremum < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Infimum und Supremum: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:11 Mo 17.03.2014
Autor: Kegorus

Aufgabe
Sei (P,<=) eine Halbordnung
zz: jede Teilmenge von P hat Infimum <=> jede TM hat sup

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
bzgl =>
Da die leere Menge Teilmenge jeder Menge ist,
existiert also auch das Infimum der leeren Menge, welches das größte Element von P ist per definitionem.
Das größte Element ist immer das Supremum, also ist hat man für P selbst schon mal das Supremum gefunden, außerdem weiß man, dass jede TM nach oben beschränkt ist. Aber wie folgere ich, dass auch jede TM ein Supremum hat?

Danke für Antworten!



        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 17.03.2014
Autor: UniversellesObjekt

Hallo Kegorus,

Ein Supremum ist doch dadurch charakterisiert, dass es größergleich allen Elementen der Menge ist, und dass es das kleinste solche ist. Dass du ein Element findest, welches die erste Bedingung erfüllt, hast du ja schon gezeigt. Wie könntest du nun eines davon auswählen, das auch der zweiten Anforderung genügt?

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Infimum und Supremum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:55 Mo 17.03.2014
Autor: Kegorus

Danke für deine Antwort!
Sei also A TM von P.
Die Menge der oberen Schranken von A ist nichtleer wie gezeigt. Diese Menge ist außerdem TM von P, hat also ein Infimum.
Dieses ist die größte untere Schranke der Menge, aber auch das kleinste Element? Wie kann ich das begründen?

Bezug
                        
Bezug
Infimum und Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:37 Di 18.03.2014
Autor: UniversellesObjekt

Indem du zeigst, dass es selbst [mm] $\ge [/mm] $ jedem Element von A ist. Falls du ein Problem damit hast, welches?

Bezug
                                
Bezug
Infimum und Supremum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:46 Di 18.03.2014
Autor: Kegorus

Danke, habs geschafft =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de