www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Inhomogenes LGS lösen
Inhomogenes LGS lösen < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Inhomogenes LGS lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 15.07.2014
Autor: SturmGhost

Aufgabe
LGS auf Lösbarkeit untersuchen und ggf. alle Lösungen bestimmen: [mm] A:=\pmat{ 1 & 2 & 3 & 4 \\ 2 & 5 & 8 & 11 \\ 1 & 0 & -1 & -2}*\pmat{ x1 \\ x2 \\ x3 \\ x4}=\pmat{ 5 \\ 12 \\ 1 } [/mm]

Ich weiß also bereits direkt das ich mindestens eine Variable frei Wählen kann da der maximal mögliche Rang der Koeffizientenmatrix kleiner ist als die Anzahl der Unbekannten.

Naja also habe ich mit Gauß erst einmal die Zeilenstufenform kredenzt (jetzt als erweiterte Koeffizientenmatrix geschrieben):

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

Jetzt ist der Rang der Koeffizientenmatrix also 2 und der Rand der erweiteren Koeffizientenmatrix ebenfalls 2. Ich muss als zwei Variablen frei wählen.

Jetzt war ich mir nicht ganz so sicher wie ich weitermachen soll.

Also wähle x3, x4 [mm] \in\IR [/mm] beliebig x3 bezeichne ich als [mm] \alpha [/mm] und x4 als [mm] \beta. [/mm] Somit erhalte ich für die zweite Gleichung:

[mm] \Rightarrow x2+2\alpha+3\beta=2 [/mm]

[mm] \gdw [/mm] x2 = [mm] 2-2\alpha+3\beta [/mm]

In die erste Gleichung

[mm] \Rightarrow x1+2*(2-2\alpha+3\beta)+3\alpha+4\beta=5 [/mm]

[mm] \gdw [/mm] x1 = [mm] 1+\alpha-10\beta [/mm]

Stimmt das?

        
Bezug
Inhomogenes LGS lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Di 15.07.2014
Autor: Infinit

Hallo SturmGhost,
ja, da hast Du richtig gerechnet. Zwei Variablen sind frei wählbar.
Viele Grüße,
Infinit

Bezug
        
Bezug
Inhomogenes LGS lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Di 15.07.2014
Autor: rmix22


> [mm]\Rightarrow x2+2\alpha+3\beta=2[/mm]
>  
> [mm]\gdw[/mm] x2 = [mm]2-2\alpha\red{-}3\beta[/mm]
>  

Achtung - Vorzeichenfehler!

Gruß RMix

Bezug
                
Bezug
Inhomogenes LGS lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 Di 15.07.2014
Autor: SturmGhost

Hui, das stimmt.

Also x2 = [mm] 2-2\alpha-3\beta [/mm]

und x1= [mm] 1+\alpha+2\beta [/mm]

Bezug
                        
Bezug
Inhomogenes LGS lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Di 15.07.2014
Autor: Herby

Hallo SturmGhost,

> Hui, das stimmt.
>  
> Also x2 = [mm]2-2\alpha-3\beta[/mm]
>  
> und x1= [mm]1+\alpha+2\beta[/mm]  

[daumenhoch]


LG
[Dateianhang nicht öffentlich] Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de