www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Injektiv Surjektiv
Injektiv Surjektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv Surjektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:28 Di 23.10.2007
Autor: Matthi1

Aufgabe
Sei M eine nichtleere Menge und f: M [mm] \to [/mm] M eine Abbildung. Zeigen oder widerlegen sie:
a) f ist injektiv [mm] \Rightarrow [/mm] f ist surjektiv
b) f ist surjektiv [mm]\Rightarrow [/mm] f ist injektiv

UNterscheiden sie jeweils die Fälle M ist endlich bzw M ist unendlich.

Hallo zusammen,

zu a) hab ich mir überlegt, dass die Bildmenge wegen der Injektivität ja die gleiche Mächtigkeit besitzt wie M (gilt dies auch für unendliche Mengen???) und eigentlich daraus auch schon die Surjektivität folgt. Mach ich mir das zu einfach??

zu b)  hab ich so gar keine Idee, wie ich da ansetzen könnte.

Für den ein oder anderen Tipp wär ich wirklich dankbar.

Grüße und vielen Dank
Matthi

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Injektiv Surjektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Mi 24.10.2007
Autor: Bastiane

Hallo Matthi1!

> Sei M eine nichtleere Menge und f: M [mm]\to[/mm] M eine Abbildung.
> Zeigen oder widerlegen sie:
>  a) f ist injektiv [mm]\Rightarrow[/mm] f ist surjektiv
>  b) f ist surjektiv [mm]\Rightarrow[/mm] f ist injektiv
>  
> UNterscheiden sie jeweils die Fälle M ist endlich bzw M ist
> unendlich.
>  Hallo zusammen,
>  
> zu a) hab ich mir überlegt, dass die Bildmenge wegen der
> Injektivität ja die gleiche Mächtigkeit besitzt wie M (gilt

Wieso sollte das gelten?

> dies auch für unendliche Mengen???) und eigentlich daraus
> auch schon die Surjektivität folgt. Mach ich mir das zu
> einfach??

Naja, eher machst du dir das zu schwer. ;-) Hilft es dir, wenn ich dir sage, dass beide Aussagen nicht gelten? Versuch doch mal ein Gegenbeispiel zu finden. Du kannst hier sogar (aus der Schule) recht bekannte einfache Funktionen nehmen.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Injektiv Surjektiv: Fallunterscheidung!
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 24.10.2007
Autor: Gnometech

Grüße!

Also für endliche Mengen hast Du durchaus recht. Natürlich wäre ein etwas formaleres Argument nicht schlecht. Wenn Du mit Kardinalitäten argumentierst, dann hilft Dir vielleicht der folgende Sachverhalt:

Ist $M$ eine endliche Menge und $N [mm] \subseteq [/mm] M$ eine Teilmenge gleicher Kardinalität, so gilt $N = M$.

Dieser Satz ist für unendliche Mengen leider falsch, die Menge $G$ der geraden Zahlen zum Beispiel ist eine echte Teilmenge von [mm] $\IN$ [/mm] mit der gleichen Kardinalität, denn $f: [mm] \IN \to [/mm] G$ mit $f(n) = 2 [mm] \cdot [/mm] n$ ist eine Bijektion.

Vielleicht hilft Dir dieses auch, Gegenbeispiele zu a) und b) zu basteln für den Fall, dass $M$ unendlich ist.

Alles klar? :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de