www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Injektiv, surjektiv, bijektiv
Injektiv, surjektiv, bijektiv < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektiv, surjektiv, bijektiv: Erklärung/Tipp
Status: (Frage) beantwortet Status 
Datum: 13:04 So 07.11.2010
Autor: SolRakt

Aufgabe
Es seien M,N endliche Mengen mit |M| = |N|. Zeigen Sie, dass für eine Abbildung f:M [mm] \to [/mm] N die Eigenschaften injektiv, surjektiv und bijektiv äquivalent sind.

Man muss hier doch nur die Bijektivität zeigen oder? Wie kann man das denn machen? Ist ja hier sehr allgemein gehalten.

        
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 So 07.11.2010
Autor: vwxyz

Also überlege dir nochmal was injektiv und surjektiv heißt. Und was bijektiv genau bedeutet. Und dann weißt du ja ncoh das die Mengen M und N gleichmächtig sind.
Weiterhin sollst du als Beweis zeigen das alle Aussagen zueinander äuqivalent sind, d.h. es reicht zu zeigen das aus 1) => 2) folgt aus 2)=>3) und aus 3) =>1) wieder folgt. wobei das aus 3) sowohl 1) als 2) folgt ja schon trivial ist da bijektivität ja schon bedeutet das es injektiv und surjektiv ist. Also überlegt einfach mal was folgt wenn |M|=|N| und f: M [mm] \to [/mm] N injektiv ist und was folgt wenn |M|=|N| und f: M [mm] \to [/mm] N surjektiv ist. Dann müsstest du es eigentlich schon erkennen.

Bezug
                
Bezug
Injektiv, surjektiv, bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 So 07.11.2010
Autor: SolRakt

Surjektiv bedeutet doch, dass jedem Element aus der Zielmenge (z) mindestens ein Element in der Defintionsmenge (D) zugeodrnet wird. Injektiv bedeutet, dass höchstens ein Element zugeordnet wird.

Wenn M und N gleichmächtig sind und die Abbildung surjektiv, wird jedem Element aus Z genau ein Element aus D zugeordnet. ist doch trivial, aber wie beweist man das? Oder reicht diese Erklärung aus?

Bezug
                        
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 So 07.11.2010
Autor: vwxyz

Ja im Grunde ist das schon trivial aber man muss es schon formgerecht hinschreiben.
Also von 1)=>2) Sei |M|=|N| und f: M [mm] \to [/mm] N injektiv so gilt [mm] \forall [/mm] x,y [mm] \in [/mm] M : f(x)=f(y) [mm] \Rightarrow [/mm] x=y Da |M|=|N| gilt also auch f(M)=N ist da ich ja zu jedem x [mm] \in [/mm] M genau ein y [mm] \in [/mm] N finde, und für aus 2)=>3) sagst du einfach:  Sei |M|=|N| und f: M [mm] \to [/mm] N surjektiv so gilt f(M)=N [mm] \Rightarrow \forall [/mm] f(x) [mm] \in [/mm] N [mm] \exists [/mm] x [mm] \in [/mm] M. Da |M|=|N| gilt also [mm] \forall [/mm] f(x) [mm] \in [/mm] N [mm] \exists! [/mm] x [mm] \in [/mm] M. (das ist ja die Definition für Bijektivität. Und 3) =>1) ist ja trivial.

Bezug
                                
Bezug
Injektiv, surjektiv, bijektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 So 07.11.2010
Autor: SolRakt

Super. Danke sehr. Ich versteh sogar alles, was da steht ;) Aber da muss man erstmal drauf kommen. xD aber gut, ich habs verstanden.

Bezug
        
Bezug
Injektiv, surjektiv, bijektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 So 07.11.2010
Autor: ullim

Hi,

siehe auch hier

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de