www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Injektivität
Injektivität < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 01.11.2007
Autor: mareike-f

Aufgabe
Seien M,N Mengen [mm]f : M \rightarrow N[/mm] eine Funktion. Zeigen Sie:
-b ist genau dann injektiv, wenn für alle [mm]A \subset M[/mm] gilt A=[mm]\overset{-1}{f} (f (A))[/mm]

Ich habe diese Frage auf keiner weiteren Internetseite gestellt.

N'abend,
ich habe mir bei dieser Aufgabe erstmal die genauen Definitionen von der Injektivität und dem Urbild rausgesucht und dann hab ich mir folgendes gedacht:

Seien alle [mm]x_1 ,x_2 \in A[/mm] mit [mm]f(x_1) = f(x_2)[/mm]

[mm]\overset{-1}{f} (f (x_1))=\overset{-1}{f} (f (x_2))[/mm]
[mm]\Leftrightarrow id_A(x_1) = id_A(x_2)[/mm]
[mm]\Leftrightarrow x_1 = x_2[/mm]

Für jedes Element [mm]x\in A[/mm] [mm]f(x) \in f(A)[/mm], also
[mm]f(A) \circ f(x) = f(f(x)) = x[/mm]
für alle [mm]x\in A[/mm]

Irgendwas kann da nicht stimmen am Schluss müsste ja auch f(f(A))) stehen oder?

Hab ich das damit überhaupt bewiesen das, das für A Teilmenge M gilt oder nur für die Surjektivität?

Grüße,
Mareike


        
Bezug
Injektivität: Wüsste's auch gern
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:18 Do 01.11.2007
Autor: Memorius

Wäre ebenfalls an der Lösung interessiert.

Bezug
        
Bezug
Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 23:20 Do 01.11.2007
Autor: angela.h.b.


> Aufgabe
> Seien M,N Mengen $ f : M [mm] \rightarrow [/mm] N $ eine Funktion. Zeigen Sie:
> f ist genau dann injektiv, wenn für alle $ A [mm] \subset [/mm] M $ gilt A=$ [mm] \overset{-1}{f} [/mm] (f (A)) $

Hallo,

in dieser Aufgabe sind ja zwie Richtungen zu zeigen:

A. f injektiv ==> es ist A= [mm] \overset{-1}{f} [/mm] (f (A))   für alle A [mm] \subseteq [/mm] M

B. A= [mm] \overset{-1}{f} [/mm] (f (A))   für alle A [mm] \subseteq [/mm] M ==> f ist injektiv.


Zu A.:

Sei f injektiv und sei [mm] A\subseteq [/mm] M.

Zu zeigen ist A= [mm] \overset{-1}{f} [/mm] (f (A)),

d.h. [mm] A\subseteq \overset{-1}{f} [/mm] (f (A))  und [mm] \overset{-1}{f} [/mm] (f [mm] (A))\subseteq [/mm] A.

Zu zeigen ist also, daß

i)  [mm] A\subseteq \overset{-1}{f} [/mm] (f (A))
und
[mm] ii)\overset{-1}{f} [/mm] (f [mm] (A))\subseteq [/mm] A
gelten.

Hierfür mußt Du jeweils zeigen, daß ein beliebiges Element der einen auch in der anderen Menge liegt.

B.
Es gelte
A= [mm] \overset{-1}{f} [/mm] (f (A))   für alle A [mm] \subseteq [/mm] M

zu zeigen: dann ist f injektiv.

Da die Voraussetzung für alle teilemengen ilt, gilt sie insbes. auch für die einelementigen Teilmengen.

Für [mm] x_i \in [/mm] M gilt also [mm] \{x_i\}= \overset{-1}{f} [/mm] (f [mm] (\{x_i\})) [/mm] , i=1,2.

> Seien alle $ [mm] x_1 ,x_2 \in [/mm] A $ mit $ [mm] f(x_1) [/mm] = [mm] f(x_2) [/mm] $

> $ [mm] \overset{-1}{f} [/mm] (f [mm] (x_1))=\overset{-1}{f} [/mm] (f [mm] (x_2)) [/mm] $

Du tust hier etwas Undefiniertes. Es ist doch das Urbild für Mengen definiert und nicht für Elemente.

Du mußt an dieser Stelle  versuchen, mithilfe der einelementigen Mengen und der Voraussetzung die Kurve zu kriegen.#

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de