www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Injektivität
Injektivität < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Di 17.12.2013
Autor: drossel

Hallo, ist die Abbildung [mm] f:\mathbb{R}^3 \to \mathbb{R}^3 [/mm] f(a,b,c)=(acosb, asinb, c) schon eingeschränkt auf  [mm] \mathbb{R}_{>0} [/mm] x [mm] (-\pi/2 [/mm] , [mm] \pi/2 [/mm] ] x [mm] \mathbb{R} [/mm] injektiv oder muss das mittelere Intervall offen sein ? Ich sehe wenn das Intervall offen sein muss nicht, wieso dann das erst mit der Injektivität klappt. Ich wäre über Hilfe dankbar. Grüsse

        
Bezug
Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 10:52 Di 17.12.2013
Autor: Diophant

Hallo,

> Hallo, ist die Abbildung [mm]f:\mathbb{R}^3 \to \mathbb{R}^3[/mm]
> f(a,b,c)=(acosb, asinb, c) schon eingeschränkt auf
> [mm]\mathbb{R}_{>0}[/mm] x [mm](-\pi/2[/mm] , [mm]\pi/2[/mm] ] x [mm]\mathbb{R}[/mm] injektiv
> oder muss das mittelere Intervall offen sein ? Ich sehe
> wenn das Intervall offen sein muss nicht, wieso dann das
> erst mit der Injektivität klappt. Ich wäre über Hilfe
> dankbar. Grüsse

Also wenn ich das richtig verstehe, schränkst du die Zielmenge ein? Was soll das bezogen auf die Injektivität überhaupt bringen?

Auf der anderen Seite sind die Arkusfunktionen grundsätzlich injektiv (weshalb?), von daher gibt es m.E. auch keinen Grund, die Definitionsmenge einzuschränken. Allerdings angeben sollte man sie schon richtig...

Gruß, Diophant

Bezug
                
Bezug
Injektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Di 17.12.2013
Autor: drossel

Danke für die Antwort. Aber sinus und cosinus sind doch [mm] 2\pi [/mm] periodisch? Ich dachte mit " f eingeschränkt auf" ist als Konvention immer gemeint, bzw immer klar, dass man meint, dass man den Definitionsbereich einschränkt, entschuldige. Hier schränke ich auch den Definitionsbereich ein.

Bezug
                        
Bezug
Injektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Di 17.12.2013
Autor: fred97


> Danke für die Antwort. Aber sinus und cosinus sind doch
> [mm]2\pi[/mm] periodisch? Ich dachte mit " f eingeschränkt auf" ist
> als Konvention immer gemeint, bzw immer klar, dass man
> meint, dass man den Definitionsbereich einschränkt,
> entschuldige. Hier schränke ich auch den
> Definitionsbereich ein.

f ist auf  $ [mm] \mathbb{R}_{>0} \times (-\pi/2 [/mm] , [mm] \pi/2 [/mm] ] [mm] \times \mathbb{R} [/mm] $ injektiv !

Versuche das mal zu beweisen.

FRED


Bezug
                        
Bezug
Injektivität: Sinus und Kosinus schon...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:26 Di 17.12.2013
Autor: Diophant

Hallo,

> Danke für die Antwort. Aber sinus und cosinus sind doch
> [mm]2\pi[/mm] periodisch?

Ja, das sind sie. Aber wenn du Sinus und Kosinus meinst, dann musst du das auch schreiben. Die Abkürzungen asin bzw. acos stehen jedenfalls für den Arkussinus und den Arkuskosinus, und das habe ich wegen fehlender Multiplikationszeichen halt falsch interpretiert.

> Ich dachte mit " f eingeschränkt auf" ist
> als Konvention immer gemeint, bzw immer klar, dass man
> meint, dass man den Definitionsbereich einschränkt,
> entschuldige. Hier schränke ich auch den
> Definitionsbereich ein.

Bereite deine Fragen besser vor und benütze LaTeX.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de