www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Injektivität, Surjektivität
Injektivität, Surjektivität < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Do 20.11.2008
Autor: Heureka89

Aufgabe
Ist die Funktion f: [mm] \IR \to \IR [/mm] mit [mm] f(x)=5*x^3-20*x+1 [/mm] injektiv oder surjektiv?

Also ich habe gezeigt, dass f(x) nicht streng monoton wachsend oder streng monoton fallend ist. Reicht es jetzt als Beweis, um zu zeigen, dass es nicht injektiv ist?
Eine andere Möglichkeit habe ich mir auch noch überlegt, aber ob das mathemathisch korrekt ist, weiß ich nicht. Also ich habe mir die Funktion ohne die 1 vorgestellt, da ja die 1 nur eine Verschiebung um eins nach oben bewirkt. Dann sieht man, dass die Funktion drei Nullstellen hat, also folgt daraus, dass die Funkrion nicht injektiv ist.

Allerdings habe ich keine Idee, wie man die Surjektivität hier untersuchen kann. Ein Tipp wäre sehr hilfreich

        
Bezug
Injektivität, Surjektivität: surjektiv
Status: (Antwort) fertig Status 
Datum: 21:40 Do 20.11.2008
Autor: Tommylee

Hi , verstehen wir das Ganze als eine Abbildung von X nach Y

also die Injektivität hast du sinngemäß richtig ausgeschlossen , denn es gibt verschiedene elemente x [mm] \in [/mm] X die auf das selbe element y [mm] \in [/mm] Y abgebildet werden.

Die Funktion ist surjektiv , da es zu jedem Element y [mm] \in [/mm] Y ein Element
x [mm] \in [/mm] X gibt mit f(x) = y .


liebe Grüße


Bezug
                
Bezug
Injektivität, Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Do 20.11.2008
Autor: Heureka89

Hallo,

danke erstmal für die schnelle Antwort.
Was ich nicht verstehe: wie zeige ich, dass es zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X mit  f(x) = y gibt?

Bezug
                        
Bezug
Injektivität, Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 Do 20.11.2008
Autor: Tommylee

Hi ,

die Funktionswerte müssen den ganzen Zielraum in diesem Fall [mm] \IR [/mm]
beschreiben. zu jedem Element y [mm] \in \IR [/mm] muss es ein f(x) = y geben.

Die Funktion muss also gegen + und -  unendlich gehen
und jeden Wert dazwischen treffen . Das tut sie , wenn sie ........  ist

Und die Funktion  f(x) = [mm] 5x^{3} [/mm] - 20x + 1 ist eine ganz rationale Funktion
und ganz rationale Funktionen sind immer  ........

larifari : wenn man beim zeichnen die Kreide nicht absetzen muss

Stetigkeit habt doch schon gehabt



liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de