www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Injektivität und Surjektivität
Injektivität und Surjektivität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität und Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mi 30.05.2007
Autor: LaLuna1123

Aufgabe
Es sei K ein Körper, V ein K- Vektorraum, U [mm] \subseteq [/mm] V ein linerare Unterraum und [mm] \IQ [/mm] (U) ein K-Vektorraum mit [mm] \IQ [/mm] (U):= {a+U : a [mm] \in [/mm] V)} mit den Eigenschaften:
(a+U) [mm] \oplus [/mm] (b+U):=(a+b)+U Für alle a, b [mm] \in [/mm] V  und
[mm] \lambda \odot [/mm] (a+U) := [mm] (\lambda [/mm] a) +U

a) Zeigen Sie, dass die Abbildung f: V -> [mm] \IQ [/mm] (U), a->a+U linear ist.
b) Unter welchen Bedingungen ist f injektiv?Beweisen Sie ihre Behauptung!
c) Wann ist f surjektiv?Beweisen Sie ebenfalls!

Die Aufgabe stand hier schonmal, allerdings nicht komplett vollständig.

Die a) hab ich soweit hinbekommen.
Bei der b) und der c) bin ich mir nicht ganz sicher, also bei b) bin ich jetzt soweit, dass f injektiv ist, wenn gilt:

[mm] \forall [/mm] a, b [mm] \in [/mm] V: f (a) = f(b) -> a=b
Wenn man die Definition einsetzt, folgt dann ja : a+U =b +U und das gilt, wenn a-b aus U ist...aber das ist ja irgendwie kein Beweis oder so...
Naja und bei der c) hab ich irgendwie das Gleiche raus... Also irgendwas mach ich wohl falsch und ich hoffe, dass mir irgendjemand sagen kann was:)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Injektivität und Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 01:40 Do 31.05.2007
Autor: HJKweseleit

b) hast du richtig gelöst, bist aber noch nicht fertig.
a-b muss aus U sein. Für alle a und b soll nun a=b herauskommen, nur dann ist die Abbildung injektiv. Das ist genau dann der Fall, wenn U nur das Null-Element enthält! Dann  ist a-b=0 und somit a=b. In allen anderen Fällen ist die Abbildung nicht injektiv.

c) Da du zu jedem a+U ein a finden kannst, bei dem f(a)=a+U ist, ist die Abbildung immer surjektiv.  

Bezug
                
Bezug
Injektivität und Surjektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Do 31.05.2007
Autor: LaLuna1123

Danke:) Dann lag ich ja garnicht mal so falsch..
ist das dann damit auch schon bewiesen? Also müsste es ja eigentlich...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de