www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Injektivität zeigen
Injektivität zeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität zeigen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:47 So 17.05.2015
Autor: canyakan95

Aufgabe
Sei f : [0, 1] [mm] \Rightarrow \IR [/mm] eine stetige Funktion mit einem Maximum an der Stelle a e (0, 1). Zeigen Sie, dass f nicht injektiv ist.

Könnt ihr mir vllt weiter helfen und zeigen, wie ich die nicht injektivität zeigen soll?
Im intervall [0;1] ist sie ja eig injektiv.

        
Bezug
Injektivität zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 So 17.05.2015
Autor: canyakan95

Die funktion lautet : f(x) = [mm] x^2-4x+1 [/mm]

Bezug
                
Bezug
Injektivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 So 17.05.2015
Autor: Marcel

Hallo,

> Die funktion lautet : f(x) = [mm]x^2-4x+1[/mm]  

es ist

    [mm] $f(x)=x^2-4x+1=(x-2)^2-3\,.$ [/mm]

Da sieht man doch sofort, dass diese Funktion KEIN Maximum an einer Stelle
$a [mm] \in [/mm] (0,1)$ hat. Als Funktion $[0,1] [mm] \to \IR$ [/mm] ist sie auch injektiv (und stetig).

Man sieht sogar: Auf $[0,1]$ fällt sie streng (das kann man sich sofort
klarmachen, wenn man sich klarmacht, wie das Bild des Graphen aussieht,
oder, weil [mm] $f\,'(x)=2*(x-2) [/mm] < 0$ für alle $x [mm] \in [/mm] [0,1]$ gilt).

Bist Du vielleicht in der Aufgabe verrutscht und die Funktion bezog sich auf
eine andere Aufgabe? Deine Ausgangsfrage war doch eine sehr allgemeine
Situation!

Gruß,
  Marcel

Bezug
        
Bezug
Injektivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 So 17.05.2015
Autor: Marcel

Hallo,

> Sei f : [0, 1] [mm]\Rightarrow \IR[/mm] eine stetige Funktion mit
> einem Maximum an der Stelle a e (0, 1). Zeigen Sie, dass f
> nicht injektiv ist.
>  Könnt ihr mir vllt weiter helfen und zeigen, wie ich die
> nicht injektivität zeigen soll?
>  Im intervall [0;1] ist sie ja eig injektiv.

nein; Du sollst doch gerade zeigen, dass es keine stetige injektive Funktion
mit Maximum an $a [mm] \in [/mm] (0,1)$ geben kann.

Sei also [mm] $f\,$ [/mm] wie oben. Sei [mm] $x_0 \in [/mm] (0,a)$ so, dass

    $f(x) < [mm] f(a)\,$ [/mm] für alle $x [mm] \in [x_0,a)$ [/mm]

gilt. Solch' ein [mm] $x_0$ [/mm] existiert, weil [mm] $f\,$ [/mm] ein lokales Maximum an a hat.

Nach dem ZWS gilt

    [mm] $[f(x_0),\,f(a)]\;\subseteq\;f([x_0,a])$. [/mm]

Nun sei [mm] $x_1 \in [/mm] (a,1)$ mit

    $f(x) < [mm] f(a)\,$ [/mm] für alle $x [mm] \in (a,x_1)\,.$ [/mm]

Nach dem ZWS gilt

    [mm] $[f(x_1),\,f(a)] \;\subseteq \;f([a,x_1])$. [/mm] (Beachte [mm] $f(x_1) [/mm] < f(a)$ und $a < [mm] x_1$.) [/mm]

Begründe kurz: Es gilt sogar

    [mm] $[f(x_0),\,f(a)\red{)}\;\subseteq\;f([x_0,a\red{)})$ [/mm]

und

    [mm] $[f(x_1),\,f(a)\red{)} \;\subseteq \;f(\red{(}a,x_1])$. [/mm]

Folgere nun unter Beachtung von [mm] $f(x_0),f(x_1) [/mm] < a$, dass

    [mm] $f([x_0,a\red{)}) \cap f(\red{(}a,x_1]) \neq \varnothing$. [/mm]

Alternativ (und vielleicht ein wenig einfacher): Seien [mm] $x_0,x_1$ [/mm] wie oben.

1. Fall: Sei [mm] $f(x_0) [/mm] > [mm] f(x_1)\,.$ [/mm] Dann gilt

    [mm] $f(x_0) \in [f(x_1),f(a)) \subseteq [f(x_1),f(a)]$ [/mm]

und nach dem ZWS gilt weiterhin

    [mm] $[f(x_1),f(a)]\;\subseteq f([a,x_1])\,,$ [/mm]

also [mm] $f(x_0)=f(x_2)$ [/mm] mit einem [mm] $x_2 \in [a,x_1]$, [/mm] also wegen [mm] $x_0 [/mm] < a$ und [mm] $x_2 \ge [/mm] a$
insbesondere [mm] $x_2 \neq x_0\,.$ [/mm]

2. Fall: Sei [mm] $f(x_0) \le f(x_1)\,.$ [/mm] Ist [mm] $f(x_0)=f(x_1)$, [/mm] so ist die Nichtinjektivität bereits
klar. Sei also [mm] $f(x_0) [/mm] > [mm] f(x_1)$. [/mm] Dann... (jetzt Du!).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de