www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Injektivität zeigen
Injektivität zeigen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Injektivität zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 Sa 25.10.2008
Autor: nina1

Aufgabe
Bestimmen Sie den max. Definitionsbereich und den min. Wertebereich zu den folgenden Funktionsvorschriften. Welche Funktionen sind injektiv?

(d) j: x [mm] \mapsto [/mm] sin (x)

Hallo,

wenn man sich den Graph von sin (x) anschaut ist klar, dass sie nicht injektiv ist. Nur leider weiß ich nicht wie ich das mathematisch zeigen kann.

Der Definitionsbereich wäre jedenfalls R
und der min. Wertebereich [-1,1].

Kann mir da vllt irgendjemand sagen, wie ich das hier zeigen soll? (ohne Taschenrechner)

Denn weiter als sin [mm] (x_{1}) [/mm] = sin [mm] (x_{2}) [/mm] komme ich nicht.


Viele Grüße


        
Bezug
Injektivität zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Sa 25.10.2008
Autor: schachuzipus

Hallo nina1,

> Bestimmen Sie den max. Definitionsbereich und den min.
> Wertebereich zu den folgenden Funktionsvorschriften. Welche
> Funktionen sind injektiv?
>
> (d) j: x [mm]\mapsto[/mm] sin (x)
>  Hallo,
>  
> wenn man sich den Graph von sin (x) anschaut ist klar, dass
> sie nicht injektiv ist. Nur leider weiß ich nicht wie ich
> das mathematisch zeigen kann.
>  
> Der Definitionsbereich wäre jedenfalls [mm] $\IR$ [/mm] [ok]
>  und der min. max. Wertebereich [-1,1]. [ok]
>  
> Kann mir da vllt irgendjemand sagen, wie ich das hier
> zeigen soll? (ohne Taschenrechner)
>  
> Denn weiter als sin [mm](x_{1})[/mm] = sin [mm](x_{2})[/mm] komme ich nicht.
>  
>
> Viele Grüße
>  

Du musst doch, um die Injektivität zu widerlegen, zwei Elemente [mm] $x_1,x_2$ [/mm] aus dem Definitionsbereich, also hier [mm] $x_1,x_2\in\IR$ [/mm] finden mit [mm] $x_1\neq x_2$, [/mm] aber [mm] $f(x_1)=f(x_2)$, [/mm] also [mm] $\sin(x_1)=\sin(x_2)$ [/mm]

Das ist doch nicht allzu schwer, nimm dir einfach 2 verschiedene Stellen, an denen du die Werte des Sinus kennst und wo diese Werte gleich sind

ZB. [mm] $x_1=0$, [/mm] das kennst du [mm] $\sin(0)=0$ [/mm]

Nun suche eine weitere Stelle [mm] $x_2\neq x_1$, [/mm] also [mm] $\neq [/mm] 0$ mit [mm] $\sin(x_2)=0$ [/mm]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de