www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Innerer Automorphismus
Innerer Automorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Innerer Automorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:31 Di 05.06.2007
Autor: Moe007

Aufgabe
Sei n [mm] \ge [/mm] 3 und [mm] \tau_{ij} [/mm] = (i j) ein 2-Zykel in [mm] S_{n}. [/mm] Zeige, dass der Automorphimus [mm] f:A_{n} \to A_{n}, \gamma \mapsto \tau_{ij}\gamma \tau_{ij}^{-1} [/mm] kein innerer Automorphismus von [mm] A_{n} [/mm] ist, d.h. es gibt kein [mm] \theta \in A_{n}, [/mm] so dass [mm] \theta \gamma \theta^{-1} [/mm] = [mm] f(\gamma) \forall \gamma \in A_{n} [/mm] gilt.

Hallo,
ich brauche ein paar Hilfestellungen bzw. Tips zur obigen Aufgabe, weil ich nicht genau weiß, wie ich das zeigen kann.
Anscheinend gilt die Aussage nur für [mm] \theta \in S_{n} [/mm] \ [mm] A_{n}, [/mm] also wenn [mm] \theta [/mm] keine gerade Permutation ist, [mm] sign(\theta) [/mm] = -1.
[mm] \tau_{ij} [/mm] ist ein 2-Zykel, d.h. Transposition oder? Und Transpositionen haben immer [mm] sign(\tau_{ij}) [/mm] = -1.
Wenn man die Behauptung zeigen will, kann man da ein Widerspruchsbeweis durchführen?
Ich hab so angefangen, dass ich angenommen habe, dass es ein [mm] \theta \in A_{n} [/mm] gibt, so dass [mm] \theta \gamma \theta^{-1} [/mm] = [mm] f(\gamma) [/mm] gilt. Dann ist [mm] sign(\theta) [/mm] = 1.
Aber wie kann ich den Beweis fortführen?

Ich hoffe, es kann mir jemand ein paar Tips geben, damit ich weiß, wie ich an die Aufgabe rangehen muss.

Danke für eure Hilfe.

Viele Grüße,
Moe

        
Bezug
Innerer Automorphismus: Ansatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Fr 08.06.2007
Autor: Moe007

Hallo,
ich hoffe, es kann mir jemand bei der Aufgabe weiter helfen, oder einen Tipp geben, wie ich hier anfangen kann, um die Behauptung zu zeigen.
Ich hab versucht mit meiner Annahme, dass es ein [mm] \theta \in A_{n} [/mm] gibt, so dass [mm] \theta \gamma \theta^{-1} [/mm] = [mm] f(\gamma) \forall \gamma \in A_{n} [/mm] gilt, weiter zu machen und zu einem Widerspruch zu kommen:

[mm] \theta \gamma \theta^{-1} [/mm] = [mm] f(\gamma) [/mm]
[mm] \gdw \theta \gamma [/mm] = [mm] f(\gamma) \theta [/mm]
[mm] \gdw \theta \gamma [/mm] = [mm] \tau_{ij} \gamma \tau_{ij}^{-1} \theta, [/mm] da nach Voraussetzung [mm] f(\gamma) [/mm] =  [mm] \tau_{ij} \gamma \tau_{ij}^{-1} [/mm] gilt.
[mm] \gdw \gamma [/mm] = [mm] \theta^{-1} \tau_{ij} \gamma (\theta^{-1} \tau_{ij})^{-1} [/mm]
Bin ich auf dem richtigen Weg? Ich weiß nun nicht mehr, wie ich den Beweis fortfahren soll und dass dann ein Widerspruch entsteht.

Ich hoffe, es kann mir jemand weiter helfen. Vielleicht bin ich total auf einem Holzweg....

Danke schön und viele Grüße,

Moe


Bezug
        
Bezug
Innerer Automorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Di 12.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de