Int. mit variablen Grenzen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen,
ich habe folgende Funktion gegeben:
[mm] F(x):=\int_{g(a)}^{g(x)} [/mm] f(x,t)dt
mit
g: [mm] [a,b]\rightarrow [/mm] [c,d] differenzierbar
f(x,t): [mm] [a,b]\times[c,d]\rightarrow\IR [/mm] stetig und partiell differenzierbar, mit stetigen partiellen Ableitungen.
Ich soll zeigen, dass F erklärt ist und die Ableitung bestimmen.
Als Hilfe habe ich folgende Vorgehensweise bekommen:
Definiere [mm] F(x,u):=\int_{g(a)}^u [/mm] f(x,t)dt mit [mm] u\in[c,d]. [/mm]
1) F(x,u) ist stetig auf [mm] [a,b]\times[c,d] [/mm] -> habe ich hinbekommen
2) F(x,u) ist partiell nach u differenzierbar mit [mm] F_u(x,u)=f(x,u) [/mm] -> hab ich glaub auch (das dürfte etwa der Fundamentalsatz der Integral- und Differentialrechnung sein)
3) F(x,u) ist partiell nach x ableitbar und [mm] F_x(x,u)=\int_{g(a)}^uf_x(x,t)dt [/mm] -> hab ich auch. Da musste ich bloß nen Satz aus der Vorlesung anwenden
So, und jetzt wird's unklar. Es soll nämlich gelten:
4) [mm] F'(x)=\frac{dF(x,g(x)}{dx} [/mm] -> das ist mir schonmal unklar. Bei den Überlegungen oben wurde u so behandelt, als sei es unabhängig von x. Aber jetzt ist u=g(x)???
5) [mm] \frac{dF(x,g(x)}{dx}=(F_x(x,g(x)),F_u(x,g(x))\cdot\vektor{1 \\ g'(x)} [/mm] -> das ist im Grund die Kettenregel (dies erklärt den Faktor hinten). Aber woher kommt der erste Faktor? Warum habe ich dort die partielle Ableitung nach u und nicht nach g(x)???
Damit würde dann die Ableitung direkt folgen. Aber ich verstehe die einzelnen Schritte am Ende nicht. Kann mir die jemand erklären? (vielleicht hat auch jemand ein Stichwort, worunter ich dieses Problem finde?)
Vielen Dank schonmal,
Balendilin
|
|
|
|
Hiho,
soweit passt alles.
Sogar deine Frage hast du letztlich beantwortet!
Was sagt denn die Kettenregel aus? Sogar im Eindimensionalen kann man das doch so schreiben!
Sei F(u) als differenzierbare Funktion gegeben, was ist dann [mm] $\bruch{d}{dx}\left(F(g(x)\right)$?
[/mm]
Na eben [mm] $F_u\left(g(x)\right)g'(x)$
[/mm]
Nur das im Eindimensionalen die Ableitung von F nach u gerade die "normale" Ableitung F' ist, d.h. da steht halt [mm] $F'\left(g(x)\right)g'(x)$.
[/mm]
Aber im Mehrdimensionalen musst du die Variable nach der du Ableitest halt angeben, aber letztlich leitest du bei der Kettenregel die äußere Funktion doch nach der Variablen ab, wo deine Verkettung stattfindet (d.h. dein g(x) drinsteht).
Nach g(x) abzuleiten würde ja gar keinen Sinn machen.
MFG,
Gono.
|
|
|
|