www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Integral-DGL
Integral-DGL < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral-DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Mi 15.11.2006
Autor: Denny22

Aufgabe
[mm] $x(s)-\int_{0}^{1}2stx(t)dt=\sin(s\pi)$ [/mm]

[mm] $s\in[0,1]$ [/mm]

Hallo an alle.

Kann mir einer die Lösung dieser DGL verraten? Also eine Lösungsfunktion $x(t)$, die die obige DGL löst. Diese Aufgabe steht im Buch "Funktionalanalysis" vom Springer-Verlag und kommt im Kapitel des Integraloperators vor.

Mich würde auch brennend interessieren, wie ich die Aufgabe mit Maple löse.

Ich danke euch für eure Antworten.

P.S.: Diese Frage wurde auf keiner anderen Internetseite und in keinem anderen Forum gestellt.

        
Bezug
Integral-DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mi 15.11.2006
Autor: Leopold_Gast

[mm]s[/mm] kannst du vor das Integral ziehen - die Integration läuft ja über [mm]t[/mm]. Wenn der Strich die Differentiation nach [mm]s[/mm] bezeichnet, erhält man durch zweimaliges Ableiten:

[mm]x'' = - \pi^2 \sin{\left( \pi s \right)}[/mm]

Diese Gleichung kann durch zweimalige Integration gelöst werden. Die Integrationskonstanten sind noch geeignet zu bestimmen (durch Einsetzen von [mm]s=0[/mm] in die Integralgleichung bekommt man z.B. sofort [mm]x(0) = 0[/mm]).

Hier zur Kontrolle das Ergebnis:

[mm]x = \frac{6}{\pi} \, s + \sin{\left( \pi s \right)}[/mm]

Bezug
                
Bezug
Integral-DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mi 15.11.2006
Autor: Denny22

Hallo,

danke für die schnelle Antwort. Habe sie durchgerechnet und fast alles verstanden. Meine Frage:

Wie kommt man auf das [mm] $\bruch{6}{\pi}$? [/mm]

Ich danke nochmals für die Mühe.

Ciao Denny

Bezug
                        
Bezug
Integral-DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mi 15.11.2006
Autor: ullim

Hi,

die Lösungsfunktion hat die Form

[mm] x(s)=sin(s\pi)+Ks [/mm] mit einer unbekannten Konstante K

einsetzten der Lösung in die Integralgleichung ergibt

[mm] sin(s\pi)+Ks=2s\integral_{0}^{1}{t*(sin(t\pi)+Kt) dt}+sin(s\pi) [/mm] also

[mm] sin(s\pi)+Ks=2s(\br{1}{\pi}+K\br{1}{3})+sin(s\pi) [/mm] daraus kann man K berechnen

mfg ullim



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de