www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral.Musterlösung
Integral.Musterlösung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral.Musterlösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Di 17.05.2011
Autor: Schmetterling99

Hallo, ich habe hier eine Musterlösung zu der Aufgabe:
Zeigen sie, dass das Integral [mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm]  e^(-x)^(2) existiert.
Nun haben die in der Musterlösung zuerst gezeigt, dass das Integral e^(-x) und [mm] e^x [/mm] einen Grenzwert besitzt.
Warum man sich den Grenzwert anschaut ist mir klar, aber warum von diesen beiden?
[mm] e^x*e^{-x} [/mm] ist ja nicht dasselbe wie e^(-x)^(2).
Was könnte die Idee dahinter sein??
Nur noch zur info die Lösung ist dann noch nicht zu ende.
Gruß

        
Bezug
Integral.Musterlösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Di 17.05.2011
Autor: angela.h.b.


> Hallo, ich habe hier eine Musterlösung zu der Aufgabe:
>  Zeigen sie, dass das Integral
> [mm]\integral_{-\infty}^{\infty}{f(x) dx}[/mm]  e^(-x)^(2)
> existiert.
>  Nun haben die in der Musterlösung zuerst gezeigt, dass
> das Integral e^(-x) und [mm]e^x[/mm] einen Grenzwert besitzt.
> Warum man sich den Grenzwert anschaut ist mir klar, aber
> warum von diesen beiden?
>  [mm]e^x*e^{-x}[/mm] ist ja nicht dasselbe wie e^(-x)^(2).
>  Was könnte die Idee dahinter sein??
>  Nur noch zur info die Lösung ist dann noch nicht zu ende.

Hallo,

tja, und wenn Du uns sagst, wie die Lösung weitergeht, dann steigt die Wahrscheinlichkeit dafür ganz immens, daß Dir einer sagen kann, warum  erstmal diese beiden GWe angeguckt wurden.

Und um welches Integral geht es? Das könntest Du auch nochmal richtig hinschreiben.

Gruß v. Angela





Bezug
                
Bezug
Integral.Musterlösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 17.05.2011
Autor: Schmetterling99

Tut mir Leid, aber irgendwie kann ich das nicht so schreiben:
[mm] \integral_{-\infty}^{\infty}{f(x) dx} (e(^-^x)^2) [/mm] (also e hoch -x und über dem -x ist hoch 2)
Dann hat man den Grenzwert des Integrals
[mm] \integral_{1}^{r}{f(x) dx} [/mm] e^-^x bestimmt. Lösung 1/e
Dann hat man den Grenzwert des Integrals
[mm] \integral_{-r}^{-1}{f(x) dx} e^x [/mm] berechnet. Lösung 1/e.
[mm] \integral_{-\infty}^{\infty}{f(x) dx} (e(^-^x)^2)= [/mm]
[mm] \limes_{r\rightarrow\infty}( \integral_{-r}^{-1}{f(x) dx} (e(^-^x)^2)+ [/mm]
( [mm] \integral_{-1}^{1}{f(x) dx} (e(^-^x)^2)+( \integral_{1}^{r}{f(x) dx} (e(^-^x)^2) \le [/mm]
[mm] \limes_{r\rightarrow\infty} [/mm] ( [mm] \integral_{-r}^{-1}{f(x) dx} e^x [/mm] +
( [mm] \integral_{-1}^{1}{f(x) dx} (e(^-^x)^2)+ [/mm]
( [mm] \integral_{1}^{r}{f(x) dx} [/mm] (e(^-^x) < [mm] \infty [/mm]

Bezug
                        
Bezug
Integral.Musterlösung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 17.05.2011
Autor: schachuzipus

Hallo Schmetterling,


das ist alles sehr sehr schlecht zu entziffern.

Exponenten mache mit dem Dach und schließe sie in geschweiften Klammern ein,

Was soll das [mm]f(x)[/mm] unterm Integral??

Ich bin sicher, dass die Aufgabe lautet, die Existenz von [mm]\int\limits_{-\infty}^{\infty}{e^{-x^2} \ dx} \ \leftarrow \ \text{klick}[/mm] nachzuweisen.

Ich erkläre dir mal die eine Abschätzung, die andere überlege dir analog.

Für [mm]x\ge 1[/mm] ist [mm]x^2\ge x[/mm] und da die Eponentialfunktion streng monoton steigend ist, auch [mm]e^{x^2}\ge e^x[/mm], also [mm]\frac{1}{e^{x^2}}\le\frac{1}{e^x}[/mm], dh. [mm]e^{-x^2}\le e^{-x}[/mm]

Also [mm]\int\limits_{1}^{\infty}{e^{-x^2} \ dx} \ \le \ \int\limits_{1}^{\infty}{e^{-x} \ dx}[/mm]

Und die Konvergenz des letzteren Integrals kann man leicht nachrechnen, damit hast du für den einen Teil eine konvergente Majorante.

Für [mm]-1\le x\le 1[/mm] ist [mm]e^{-x^2}[/mm] stetig, und stetige Funktionen nehmen auf kompakten Intervallen ihr Maximum an, also kannst du [mm]\int\limits_{-1}^1{e^{-x^2} \ dx}[/mm] entsprechend abschätzen, Es ist in jedem Falle endlich. Wenn du magst, kannst du das genauer abschätzen.

Nun überlege, wie die in der Lösung eine Majorante für [mm]\int\limits_{-\infty}^{-1}{e^{-x^2} \ dx}[/mm] gefunden haben.

Mache das wie oben ... [mm]x\le -1\Rightarrow\ldots[/mm]

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de