www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integral
Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 Di 03.10.2006
Autor: nitro1185

Hallo. Beschäftige mich mit folgendem Integral:

[mm] \integral_{-\infty}^{\infty}{e^{-x^2-i*x}*x dx} [/mm]

Das ist schon ein vereinfachtes Zwischenergebnis. Ich weiß ja dass

[mm] \integral_{-\infty}^{\infty}{e^{-x^2} dx}=\wurzel{Pi} [/mm]

Ich habe eine Substitution mit [mm] z=x^2+ix [/mm] probiert was aber nicht sinnvoll ist. es muss doch eine sinnvolle vereinfachung geben, die dann das Integral  [mm] \integral_{-\infty}^{\infty}{e^{-x^2} dx} [/mm] alleine beinhaltet?

Viell. weiß jemand dazu was. Mfg daniel

        
Bezug
Integral: Idee
Status: (Antwort) fertig Status 
Datum: 16:20 Di 03.10.2006
Autor: Loddar

Hallo nitro!


Nur ein erster "Bauchverdacht", ohne es nachgerechnet zu haben...

Zerlege in: [mm] $e^{-x^2-i*x} [/mm] \ = \ [mm] e^{-x^2}*e^{-i*x}$ [/mm] und wende partielle Integration an.


Gruß
Loddar


Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Di 03.10.2006
Autor: nitro1185

Hallo !!

Danke für die Antwort. Nein das war das erste was ich probiert habe. Habe diese Art von Integral gefunden nur den beweis nicht gemacht. Man sollte das Argument quadratisch ergänzen. Weiß noch nicht wie das gehn soll :-)!!

Mfg daniel

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Di 03.10.2006
Autor: Leopold_Gast

[mm]\int_{-\infty}^{\infty}~\operatorname{e}^{-x^2 - \operatorname{i} x}~\mathrm{d}x \ = \ \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} \left( \cos{x} - \operatorname{i} \sin{x} \right)~\mathrm{d}x \ = \ \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} \cos{x}~\mathrm{d}x \ - \ \operatorname{i} \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} \sin{x}~\mathrm{d}x[/mm]

Der Imaginärteil verschwindet, da der Integrand ungerade ist. Es folgt:

(*) [mm]\int_{-\infty}^{\infty}~\operatorname{e}^{-x^2 - \operatorname{i} x}~\mathrm{d}x \ = \ \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} \sum_{k=0}^{\infty}~\frac{(-1)^k x^{2k}}{(2k)!}~\mathrm{d}x \ = \ \sum_{k=0}^{\infty}~\frac{(-1)^k}{(2k)!} \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} x^{2k}~\mathrm{d}x[/mm]

Nun folgt für [mm]\alpha_k = \int_{-\infty}^{\infty}~\operatorname{e}^{-x^2} x^{2k}~\mathrm{d}x[/mm] die Rekursionsbeziehung

[mm]\alpha_k = \frac{2k-1}{2} \, \alpha_{k-1} \, , \ \ k \geq 1[/mm]

wie man mittels partieller Integration beweist. Schreibe dazu [mm]\operatorname{e}^{-x^2} x^{2k} = - \frac{1}{2} (-2x) \operatorname{e}^{-x^2} x^{2k-1}[/mm] und beginne die partielle Integration mit der Stammfunktion von  [mm](-2x) \operatorname{e}^{-x^2}[/mm].

Wegen [mm]\alpha_0 = \sqrt{\pi}[/mm] folgt allgemein

[mm]\alpha_k = \frac{(2k)!}{4^k k!} \, \sqrt{\pi} \, , \ \ k \geq 0[/mm]

Das setzt man bei (*) ein und erhält:

[mm]\int_{-\infty}^{\infty}~\operatorname{e}^{-x^2 - \operatorname{i} x}~\mathrm{d}x \ = \ \sum_{k=0}^{\infty}~\frac{(-1)^k}{(2k)!} \cdot \frac{(2k)!}{4^k k!} \sqrt{\pi}[/mm]

[mm]= \ \sqrt{\pi} \sum_{k=0}^{\infty}~\frac{\left( - \frac{1}{4} \right)^k}{k!} \ = \ \operatorname{e}^{- \frac{1}{4}} \sqrt{\pi}[/mm]

Das ist zumindest einmal eine Lösung, wenn sie mir auch recht umständlich erscheint. Wenn man stattdessen im Integral quadratisch ergänzt, bekommt man

[mm]\int_{- \infty}^{\infty}~\operatorname{e}^{-x^2 - \operatorname{i} x}~\mathrm{d}x \ = \ \int_{- \infty}^{\infty}~\operatorname{e}^{- \left( x + \frac{\operatorname{i}}{2} \right)^2 - \frac{1}{4}}~\mathrm{d}x[/mm]

Die Substitution [mm]t = x + \frac{\operatorname{i}}{2}[/mm] führt auf

[mm]\int_{- \infty}^{\infty}~\operatorname{e}^{-x^2 - \operatorname{i} x}~\mathrm{d}x \ = \ \operatorname{e}^{- \frac{1}{4}} \int_{- \infty + \frac{1}{2} \operatorname{i}}^{\infty + \frac{1}{2} \operatorname{i}}~\operatorname{e}^{-t^2}~\mathrm{d}t[/mm]

Beim Integral ist über die zur reellen Achse parallele Gerade, die durch [mm]\frac{\operatorname{i}}{2}[/mm] geht, zu integrieren. Wenn man das mit dem schon bekannten Ergebnis oben vergleicht, sieht man, daß

[mm]\int_{- \infty + \frac{1}{2} \operatorname{i}}^{\infty + \frac{1}{2} \operatorname{i}}~\operatorname{e}^{-t^2}~\mathrm{d}t \ = \ \sqrt{\pi}[/mm]

gelten muß. Ich bin aber gerade mit Blindheit geschlagen, wie man das (natürlich unter Verwendung des Gaußschen Fehlerintegrals) direkt sehen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de