www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Tip
Status: (Frage) beantwortet Status 
Datum: 18:50 Fr 20.10.2006
Autor: jentowncity

Aufgabe
Gegeben sei die folgende Funktion:
f(r):= [mm] \integral_{0}^{\pi}{ln(1-2r cos(t)+r^{2}) dt} [/mm]     mit [mm] r\in(-1;1) [/mm]

Zeigen Sie, dass f konstant ist, und berechnen Sie dazu f'(r).

Also ich hab erstmal abgeleitet (im Integral) und folgenden Ausdruck bekommen:
[mm] f'(r)=\int_{0}^{\pi}~(\frac{d}{dr}~ln(1-2r*cos(t)+r^{2}))~dt [/mm]
    
      [mm] =\int_{0}^{\pi}~\frac{2(cos(t)-r)}{2r*cos(t)-r^{2}-1}~dt [/mm]

So, und hier steck ich nun und weiß nicht wie ich das ausrechnen soll.
Eine Umformung ist mir dann noch eingefallen, allerdings weiß ich nicht ob die mich hier weiterbringt:
      
      [mm] =2\int_{0}^{\pi}~\frac{r-cos(t)}{(r-cos(t))^{2}+sin^{2}(t)}~dt [/mm]

Kann mir jemand einen Tip geben wie ich hier vorgehen soll um das auszurechnen?

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 21.10.2006
Autor: Leopold_Gast

Das scheint ja echt vertrackt. Schreibe

[mm]\frac{r - \cos{t}}{r^2 + 1 - 2r \cos{t}} \ \mathrm{d}t = \frac{1}{2r} \left( 1 + \frac{r^2 - 1}{r^2 + 1 - 2r \cos{t}} \right) \, \mathrm{d}t[/mm]

Beim zweiten Summanden der Klammer bringt dich die Substitution [mm]x = \frac{1 + r}{1 - r} \tan{\frac{t}{2}}[/mm] weiter. Für sie gilt:

[mm]\frac{(1 + r)^2 - (1 - r)^2 x^2}{(1 + r)^2 + (1 - r)^2 x^2} = \cos{t}[/mm]  und  [mm]\mathrm{d}t = \frac{2 (1 + r)(1 - r) }{(1 + r)^2 + (1 - r)^2 x^2} \, \mathrm{d}x[/mm]

Wenn du [mm]\cos{t}[/mm] und [mm]\mathrm{d}t[/mm] enstprechend ersetzt, kommst du bis auf konstante Faktoren auf [mm]\int~\frac{\mathrm{d}x}{1 + x^2}[/mm]. Einen eleganteren Zugang sehe ich im Moment nicht. Aber ich bin [mm]\mu[/mm]-fast sicher, daß es einen gibt ...

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Sa 21.10.2006
Autor: jentowncity

Danke Leopold_Gast für deine Mühen!
Hut ab für diesen Weg, ich wär nie darauf gekommen! Ich bin beeindruckt!

Hab das jetzt nachgerechnet und Folgendes rausbekommen:

-2 [mm] \integral_{0}^{\pi}{\frac{1}{2r} \left( 1 + \frac{r^2 - 1}{r^2 + 1 - 2r \cos{t}} \right) \, \mathrm{d}t }=\bruch{-1}{r}\integral_{0}^{\pi}{ dt}+\bruch{2}{r}\integral_{}^{}{\bruch{dx}{x^{2}+1}} [/mm]   die Grenzen weiß ich nicht...

das ergibt dann:

[mm] \bruch{-t}{r}+\bruch{2}{r}arctan(\bruch{1+r}{1-r}tan\bruch{t}{2}) [/mm]  in den Grenzen von 0 bis pi.

[mm] =\bruch{-1}{r}(\pi+\limes_{n\rightarrow\pi}-2arctan(\bruch{1+r}{1-r}tan\bruch{n}{2}) [/mm]

als Lösung muss 0 rauskommen für r aus (-1;1). Das sagt auch Derive, aber wie kann man das zeigen?
Bzw. wie kann man zeigen, dass als Lösung von dem Grenzwert [mm] -\pi [/mm] rauskommt?
Kann mir da jemand einen Hinweis geben?



Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Sa 21.10.2006
Autor: Leopold_Gast

Bei mir sieht das leicht anders aus:

[mm]\int_0^{\pi}~\frac{1}{2r} \left( 1 + \frac{r^2 - 1}{r^2 + 1 - 2r \cos{t}} \right)~\mathrm{d}t \ = \ \frac{1}{2r} \int_0^{\pi}~\mathrm{d}t \ + \int_0^{\pi}~\frac{1}{2r} \cdot \frac{r^2 - 1}{r^2 + 1 - 2r \cos{t}}~\mathrm{d}t[/mm]

Mit der von mir angegebenen Substitution [mm]x = \frac{1 + r}{1 - r} \cdot \tan{\frac{t}{2}}[/mm] geht die Grenze [mm]t=0[/mm] in die Grenze [mm]x=0[/mm] und die Grenze [mm]t = \pi - 0[/mm] in die Grenze [mm]x = \infty[/mm] über. Nach Umrechnung des Integranden auf die Variable [mm]x[/mm] erhält man:

[mm]\frac{\pi}{2r} + \int_0^{\infty}~- \frac{1}{r} \cdot \frac{1}{x^2 + 1}~\mathrm{d}x \ = \ \frac{\pi}{2r} - \frac{\pi}{2r} = 0[/mm]

Das Finden der Substitution war übrigens kein Geniestreich. Vielmehr habe ich die gängigen Techniken zur Lösung trigonometrischer Integrale verwendet und alle dabei vorkommenden Substitutionen zu einer einzigen zusammengefaßt. Also reine Fleißarbeit und keine geniale Intuition.

Bezug
                                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Sa 21.10.2006
Autor: jentowncity

Ja, du hast Recht, bei mir hat sich ein Vorzeichenfehler eingeschlichen.
Ich glaube, du hast ganz am Anfang vergessen die 2 mitzunehmen, für das ende macht das aber keinen Unterschied.

dann steht da: [mm] \frac{\pi}{r} [/mm] - [mm] \frac{\pi}{r} [/mm] = 0

Ich hätte noch eine letzte Bitte an dich Leopold_Gast:

Wenn du Zeit und Lust hast, könntest du mir vielleicht im Groben erläutern wie du auf die Substitutionen gekommen bist und was "die gängigen Techniken zur Lösung trigonometrischer Integrale" sind?

Und wie bist du auf die Grenzen gekommen? Das versteh ich auch noch nicht, wie man bei Substitutionen die Grenzen ändert.
Ich hab da noch einige Schwierigkeiten und würde das auch gerne jemand anderem erklären können.

Bezug
                                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:39 Mo 23.10.2006
Autor: jentowncity

Ok, das mit den Grenzen hab ich jetzt verstanden, aber auf die Substitutionen komm ich einfach nicht...

Wie hast du das gemacht?

Bezug
                                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Mo 23.10.2006
Autor: Leopold_Gast

Vielleicht schaust du einmal []hier. Meine Substitution modifiziert das dort angegebene Verfahren.

Bezug
                                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:21 Mo 23.10.2006
Autor: jentowncity

Danke nochmal Leopold_Gast, die Seite ist ja der Hammer! Hab das jetzt verstanden.

Du hast mir echt gut weitergeholfen!

MfG jentowncity

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de