www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Sa 17.03.2007
Autor: Zwinkerlippe

Guten Abend

ich möchte berechnen [mm] \integral_{-1,5}^{0}{\bruch{4x+6}{(x+2)^{2}} dx} [/mm]

ich benutze partielle Integration:

u=4x+6
u'=4
[mm] v'=(x+2)^{-2} [/mm]
[mm] v=-(x+2)^{-1} [/mm]

[mm] -\bruch{4x+6}{x+2}-\integral_{-1,5}^{0}{\bruch{-4}{x+2} dx}=-\bruch{4x+6}{x+2}+4\integral_{-1,5}^{0}{\bruch{1}{x+2} dx} [/mm]

jetzt behalte ich den 1. Term, das Integral gelöst sollte ln(x+2) ergeben, mit den Grenzen ergibt sich ln2-ln0,5, wie wirken sich die Grenzen auf den 1. Term aus?

Ich habe die Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke Klaus



        
Bezug
Integral: konkret?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Sa 17.03.2007
Autor: Disap


> Guten Abend

Hallo.

> ich möchte berechnen
> [mm]\integral_{-1,5}^{0}{\bruch{4x+6}{(x+2)^{2}} dx}[/mm]
>  
> ich benutze partielle Integration:
>  
> u=4x+6
>  u'=4
>  [mm]v'=(x+2)^{-2}[/mm]
>  [mm]v=-(x+2)^{-1}[/mm]
>  
> [mm]-\bruch{4x+6}{x+2}-\integral_{-1,5}^{0}{\bruch{-4}{x+2} dx}=-\bruch{4x+6}{x+2}+4\integral_{-1,5}^{0}{\bruch{1}{x+2} dx}[/mm]
>  
> jetzt behalte ich den 1. Term, das Integral gelöst sollte
> ln(x+2) ergeben, mit den Grenzen ergibt sich ln2-ln0,5, wie
> wirken sich die Grenzen auf den 1. Term aus?

Also auf den ersten Blick kann ich keinen Fehler entdecken. Ich verstehe deine Frage leider auch nicht ganz. Ich dachte, man hätte beim ln ( etwas negatives), aber das ist es ja jetzt nicht. Also so wie es jetzt da steht, kann ich keine Besonderheit zur normalen partiellen Integration entdecken. Was genau meinst du?

[mm] -\bruch{4x+6}{x+2} [/mm]

Hier setzt du selbstverständlich auch die Grenzen 0 und -1.5 ein.

[kopfkratz]

> Ich habe die Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Danke Klaus
>  
>  

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Sa 17.03.2007
Autor: schachuzipus

Hallo Klaus,

alles richtig [daumenhoch],

die Grenzen musst du in beiden Termen einsetzen,

also [mm] -\bruch{4\cdot{}\red{0}+6}{\red{0}+2}+4ln(\red{0}+2)-\left[-\bruch{4(\red{-1,5})+6}{\red{-1,5}+2}+4ln(\red{-1,5}+2)\right] [/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Sa 17.03.2007
Autor: Zwinkerlippe

Danke für die Erklärung, das wollte ich machen, kam mir aber unlogisch vor, der 1. Gedanke ist der Beste,

Klaus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de