www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 11.11.2007
Autor: ebarni

Aufgabe
[mm] \integral_{0}^{1}\integral_{0}^{1}{\bruch{2x+y}{x^2+y^2} dy dx} [/mm]

Hallo zusammen,

bei dem Integral muss ich also zuerst nach dy integrieren. Da fehlt mir der Ansatz. Wie kann ich die Stammfunktion für diesen gewaltigen Ausdruck finden?

Die Stammfunktion von [mm] \bruch{dy}{x^2+y^2} [/mm] ist ja [mm] \bruch{1}{x}arctan \bruch{y}{x}. [/mm] Aber was mache ich mit dem "restlichen" Zähler 2x+y?

Für eure Hilfe sage ich schon mal Dankeschön im Voraus!

Ich habe diese Frage in keinem sonstigen Forum gestellt.

Viele Grüße, Andreas

        
Bezug
Integral: Tipp: Substitution
Status: (Antwort) fertig Status 
Datum: 14:25 So 11.11.2007
Autor: Loddar

Hallo Andreas!


Hier führt Substitution sowie Dein genanntes Integral mit dem [mm] $\arctan(...)$ [/mm] zum Ziel. Forme wie folgt um:

[mm] $$\bruch{2x+y}{x^2+y^2} [/mm] \ = \ [mm] \bruch{2x}{x^2+y^2}+\bruch{y}{x^2+y^2} [/mm] \ = \ [mm] \bruch{2x}{x^2+y^2}+\bruch{1}{2}*\bruch{2y}{x^2+y^2} [/mm] $$
Den ersten Bruch nach Deinem Vorschlag integrieren. Und beim 2. Integral steht nun im Zähler exakt die Ableitung des Nenners.


Gruß
Loddar


Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 So 11.11.2007
Autor: ebarni

Hallo Loddar, vielen Dank für Deine schnelle Antwort!

Du schreibst, im zweiten Teil steht im Zähler die Ableitung des Nenners. Was heißt das jetzt für meine Stammfunktion?

Wenn ich den ersten Teil [mm] \bruch{2x}{x^2+y^2} [/mm] nach dy integriere, kann ich doch 2x als Konstante auffassen und  die Stammfunktion des ersten Teils ist dann [mm] \bruch{2xy}{x^2y+ \bruch{1}{3}y^3} [/mm] ist das richtig?

Der zweite Teil [mm] \bruch{y}{x^2+y^2} [/mm] erhält doch dann als Stammfunktion [mm] \bruch{1}{x}arctan \bruch{y}{x}. [/mm]

Grüße, Andreas

Bezug
                        
Bezug
Integral: großes Durcheinander
Status: (Antwort) fertig Status 
Datum: 10:16 Mo 12.11.2007
Autor: Loddar

Hallo Andreas!


Jetzt solltest Du Dir Deinen eigenen Frageartikel sowie meine Antwort noch einmal sorgfältig durchlesen. Da ist Dir doch einiges durcheinander geraten ...

Du hast doch selber geschrieben, wie die Stammfunktion des ersten Bruches lautet:
[mm] $$\integral{\bruch{2x}{x^2+y^2} \ dy} [/mm] \ = \ [mm] 2x*\blue{\integral{\bruch{dy}{x^2+y^2}}} [/mm] \ = \ [mm] 2x*\blue{\bruch{1}{x}*\arctan\left(\bruch{y}{x}\right)} [/mm] \ = \ [mm] 2*\arctan\left(\bruch{y}{x}\right)$$ [/mm]

Und bei dem 2. Bruch sollst Du $z \ := \ [mm] x^2+y^2$ [/mm] substituieren. Oder Du wendest gleich die Formel für die logarithmische Integration an, da bei [mm] $\integral{\bruch{2y}{x^2+y^2} \ dy}$ [/mm] Im Zähler exakt die Ableitung des Nenners steht:
[mm] $$\integral{\bruch{f'(t)}{f(t)} \ dt} [/mm] \ = \ [mm] \ln\left| \ f(t) \ \right|+c$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Mo 12.11.2007
Autor: ebarni

Hallo Loddar,

sorry für die Verwirrung und vielen Dank für Deinen ausführlichen post. Jetzt ist es mir klar geworden. Bin wohl etwas durcheinander geraten...;-) Nochmals, vielen Dank und viele Grüße in die Hauptstadt!

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de