www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral
Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:35 So 30.12.2007
Autor: TschaeiBie

Aufgabe
[mm] \integral_{0}^{x}{ (\bruch{5}{4} * t^{3} - \bruch{5}{8} * t^{4})dt} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Lösung laut Prof:

[mm] \bruch{1}{16}*(5*x^{4} [/mm] - [mm] 2*x^{5}) [/mm]

Ich steh grad ziemlich aufm schlauch so wies aus sieht denn ich komm nicht mal ansatzweiße auf die Lösung
kann mir jemand helfen???

        
Bezug
Integral: Deine Lösungsansätze?
Status: (Antwort) fertig Status 
Datum: 15:39 So 30.12.2007
Autor: Loddar

Hallo TschaeiBie,

[willkommenmr] !!


Wie lauten denn Deine Lösungsansätze bzw. wie weit kommst Du denn?

Du musst hier wie gewöhnlich zunächst die stammfunktion bilden (in diesem Falle für die Variable $t_$ ) und anschließend die Integrationsgrenzen [mm] $t_1 [/mm] \ = \ 0$ bzw. [mm] $t_2 [/mm] \ = \ x$ einsetzen.

Am Ende wurde hier noch der Term [mm] $\bruch{1}{16}$ [/mm] ausgeklammert.


Gruß
Loddar


Bezug
        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 So 30.12.2007
Autor: TschaeiBie

ja eben dacht ich auch mich hat zwar das dt iritiert aber hab halt dann ganz normal das Integral gelöst und bin auf
[mm] 5*x^{4} [/mm] - [mm] 3\bruch{1}{8}*x^{5} [/mm]

gekommen Null brauch ich ja nich einsetzen kommt ja eh null raus

Bezug
                
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 So 30.12.2007
Autor: M.Rex

Hallo

Da hast du Fehler bei der Stammfunktion gemacht.

[mm] f(t)=\bruch{5}{4}t^{3}-\bruch{5}{8}t^{4} [/mm]

hat die Stammfunktion ("Aufleitung)

[mm] F(t)=\bruch{5}{4}*\bruch{1}{4}t^{4}-\bruch{5}{8}*\bruch{1}{5}t^{5} [/mm]
[mm] =\bruch{5t^{4}}{16}-\bruch{2t^{5}}{16} [/mm]

Also:
[mm] \integral_{0}^{x}{(\bruch{5}{4}\cdot{}t^{3}-\bruch{5}{8}\cdot{}t^{4})dt}=F(x)-F(0)=\bruch{5x^{4}}{16}-\bruch{2x^{5}}{16}-\bruch{5*0^{4}}{16}+\bruch{2*0^{5}}{16}=\bruch{5x^{4}-2x^{5}}{16} [/mm]

Bezug
                        
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 So 30.12.2007
Autor: TschaeiBie

Oh man thx
habs grad gemerkt flüchtigkeitsfehler
danke für die schnelle antwort

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de