www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral
Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: begrenzt von Geraden
Status: (Frage) beantwortet Status 
Datum: 22:03 Mi 29.04.2009
Autor: MathePhobie

Aufgabe
Skizzieren Sie das Gebiet D, begrenzt von den Geraden x−y = 2, x−y = −1, 2x+3y = 0 und 2x+3y = 1.
Berechnen Sie das Doppelintegral von f(x, y) = xy, indem Sie x = [mm] \bruch{1}{5}(3u+v) [/mm] und y = [mm] \bruch{1}{5} [/mm] (v−2u) substituieren.
Skizzieren Sie den Integrationsbereich nach der Substitution.

Heißt das für mich [mm] \integral_{x-y=-1}^{x-y=2}\integral_{2x+3y=0}^{2x+3y=0}{ \bruch{1}{5}(3u+v)*\bruch{1}{5} (v-2u)dudv} [/mm]

Wie kann ich aus den Gleichungen meine Grenzen berechnen und wie weiß ich welche Gleichung zu welchem Integral gehört??

        
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mi 29.04.2009
Autor: MathePhobie

Aufgabe
Berechnen Sie [mm] \integral_{D}^{}\integral_{}^{}{x^3y dxdy}, [/mm] wobei D jenen Bereich der Ebene bezeichnet, der von den Geraden y = x und
y = 2x und den Hyperbeln xy = 1 und xy = 3 begrenzt wird (Skizze!).
(Hinweis: Substituieren Sie x = [mm] \bruch{u}{v} [/mm] , y = vu.)

Das taucht die gleiche Frage auf . Ist das richtig [mm] \integral_{2x}^{x}\integral_{xy=3}^{xy=1}{(\bruch{u}{v})^3*vu dudv} [/mm] oder wie lautet dafür die vorgehensweiße?

Bezug
        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Do 30.04.2009
Autor: fred97

Du benötigst die mehrdimensionale Substitutionsregel.
Kennst Du die ? Wenn ja, so schreib sie mal auf.


FRED

Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:33 Do 30.04.2009
Autor: MathePhobie

Leider kenne ich diese Formel nicht, kannst du es mir bitte einmal vorführen anhand dieses Beispiels

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Do 30.04.2009
Autor: leduart

Hallo
kennst du die Jacobimatrix, oder das Wort Funktionaldeterminante?
Wenn du  statt dxdy dudv haben willst, hast du ja eine Flaechenverzerrung. Das Mass dafuer ist die Determinante von
[mm] \vmat{ \bruch{\partial x}{\partial u} & \bruch{\partial x}{\partial v} \\ \bruch{\partial y}{\partial u} & \bruch{\partial y}{\partial v}} [/mm]
Die kannst du ja hier sehr einfach ausrechnen.
Ausserdem setz in deine 4 Geradengleichungen ein, dann weisst du wozu die Umformung ist. welche Geraden kommen fuer u und v raus?
Irgendwo in deinem skript oder Buch steht das sicher, sonst gaeb es die Aufgabe nicht.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de