www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral
Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 31.05.2012
Autor: alpha02

Aufgabe
Bestimme das Integral [mm] $\integral_B{2\cos(x)\sin(x) \mathrm{d}x\mathrm{d}y}$, [/mm] wobei [mm] $\partial B=\{(\cos^3(t),\sin^3(t)), t\in [0,2*\pi]\}$. [/mm]





Hallo,

ich habe schon versucht, das Integral mit dem Satz von Gauss in ein Wegintegral umzuformen, allerdings wird das integrieren dann nicht einfacher. Um das Integral direkt zu berechnen, müsste ich B in Abhängigkeit von x und y kennen. Wie kann ich diese Aufgabe lösen?

Vielen Dank.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:30 Do 31.05.2012
Autor: leduart

Hallo
> Bestimme das Integral [mm]\integral_B{2\cos(x)\sin(x) \mathrm{d}x}[/mm],
> wobei [mm]\partial B=\{(\cos^3(t),\sin^3(t)), t\in [0,2*\pi]\}[/mm].
>  
>
>
> Hallo,
>
> ich habe schon versucht, das Integral mit dem Satz von
> Gauss in ein Wegintegral umzuformen, allerdings wird das
> integrieren dann nicht einfacher. Um das Integral direkt zu
> berechnen, müsste ich B in Abhängigkeit von x und y
> kennen. Wie kann ich diese Aufgabe lösen?

wieso musst du B in abh von x,y kennen, das geht doch nicht, du must doch nur von Rand zu Rand integrieren, und der ist ja gegeben, allerdings finde ich eigenartig, wie dein Integral aussieht, da kommt kein y und kein dy vor??
was wuerdest du denn machen, wenn B ein Rechteck oder ein Kreis waere?
hier ein Bildchen deines Gebietes
[Dateianhang nicht öffentlich]
Gruss leduart


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:09 Fr 01.06.2012
Autor: alpha02

Das Integral sollte so heißen: $ [mm] \integral_B{2\cos(x)\sin(x) \mathrm{d}x\mathrm{d}y} [/mm] $. Wenn ich das unbestimmte Integral hiervon berechnen sollte, würde ich a=sin(x) substituieren und käme dann auf [mm] a^2*y. [/mm] Bei Integration über ein Rechteck [a,b]x[c,d] würde ich für x die Grenzen a und b und für y die Grenzen c und d einsetzen. Bei diesem Integral weiß ich nicht, wie ich vorgehen könnte.

Bezug
                        
Bezug
Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Sa 02.06.2012
Autor: rainerS

Hallo!

> Das Integral sollte so heißen: [mm]\integral_B{2\cos(x)\sin(x) \mathrm{d}x\mathrm{d}y} [/mm].
> Wenn ich das unbestimmte Integral hiervon berechnen sollte,
> würde ich a=sin(x) substituieren und käme dann auf [mm]a^2*y.[/mm]
> Bei Integration über ein Rechteck [a,b]x[c,d] würde ich
> für x die Grenzen a und b und für y die Grenzen c und d
> einsetzen. Bei diesem Integral weiß ich nicht, wie ich
> vorgehen könnte.  

Tipp: Der Integrand $a^2y$ ist gerade in x und ungerade in y. Das Integrationsgebiet ist symmetrisch bzgl x und y.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:09 So 03.06.2012
Autor: alpha02

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de