www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral Einheitskugel
Integral Einheitskugel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Do 18.12.2014
Autor: Cycas

Aufgabe
Es Bezeichne [mm] B_{1}(0) [/mm] die offene Einheitskugel im [mm] \IR^{n}. [/mm] Zeigen Sie, dass das Integral [mm] \integral_{B_{1}(0)}{ \bruch{1}{\wurzel{1-||x||^{2}}}dx} [/mm] existiert. Berechnen Sie es für n=2,3

Hallo!

Ich würde mich sehr freuen, wenn mir zu dieser Aufgabe jemand weiterhelfen könnte und mir einen Lösungsansatz/eine Lösung dazu geben würde.
Danke schonmal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Do 18.12.2014
Autor: fred97


> Es Bezeichne [mm]B_{1}(0)[/mm] die offene Einheitskugel im [mm]\IR^{n}.[/mm]
> Zeigen Sie, dass das Integral [mm]\integral_{B_{1}(0)}{ \bruch{1}{\wurzel{1-||x||^{2}}}dx}[/mm]
> existiert. Berechnen Sie es für n=2,3
>  Hallo!
>  
> Ich würde mich sehr freuen, wenn mir zu dieser Aufgabe
> jemand weiterhelfen könnte und mir einen
> Lösungsansatz/eine Lösung dazu geben würde.
> Danke schonmal!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Tipp: kugelkoordinaten

FRED


Bezug
                
Bezug
Integral Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Do 18.12.2014
Autor: Cycas

Tut mir leid, ich tue mich mit dem ganzen Thema noch sehr schwer, mit dem Tipp kann ich leider nicht so viel anfangen.. Kannst du mir erklären wie ich bei so einer Aufgabe vorgehen soll?

Bezug
                        
Bezug
Integral Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Do 18.12.2014
Autor: fred97


> Tut mir leid, ich tue mich mit dem ganzen Thema noch sehr
> schwer, mit dem Tipp kann ich leider nicht so viel
> anfangen.. Kannst du mir erklären wie ich bei so einer
> Aufgabe vorgehen soll?

Frage: hattet Ihr in der Vorlesung Kugelkoordinaten oder nicht ?

FRED


Bezug
                                
Bezug
Integral Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Do 18.12.2014
Autor: Cycas

Ja, Kugelkoordinaten hatten wir.

Bezug
                                        
Bezug
Integral Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Do 18.12.2014
Autor: fred97


> Ja, Kugelkoordinaten hatten wir.  

Wo ist dann Dein Problem ?
#
FRED


Bezug
                                                
Bezug
Integral Einheitskugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Do 18.12.2014
Autor: Cycas

Man soll ja erst einmal zeigen, dass dieses Integral exisitert. Dafür muss ich doch zeigen,dass die Reihe [mm] \summe_{B_{1}(0)}\bruch{1}{\wurzel{1-||x||^{2}}} [/mm] konvergiert, oder gehe ich damit dann komplett falsch an die Aufgabe ran? Wie genau bringe ich denn dann die Kugelkoordinaten ein?

Bezug
                                                        
Bezug
Integral Einheitskugel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Do 18.12.2014
Autor: andyv

Hallo,

nach der Trafo-Formel gilt:
$ [mm] \integral_{B_{1}(0)}{ \bruch{1}{\wurzel{1-||x||^{2}}}dx} =|\partial B_1(0)|\int_0^1 \frac{r^{n-1}}{\sqrt{1-r^2}}\mathrm{d}r$. [/mm]

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de