www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Integral/Fubini
Integral/Fubini < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral/Fubini: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 31.07.2009
Autor: Fry

Aufgabe
Sei [mm] f:\IR^3\to\IR [/mm] gegeben durch [mm] f(x,y,z)=4xy*1_{[0,1]^3}(x,y,z) [/mm]
Es sei (X,Y,Z) ein Zufallsvektor, dessen Verteilung die Wkeitsdichte f besitzt.
Bestimmen Sie P(X<Y<Z).

Hallo!

Ich hab mir mal gedacht, dass die obige Aufgabe anders löse als in der Musterlösung.

Man soll ja P(A) berechnen mit [mm] A=\{(x,y,z)\in\IR^3,0\le x In der Musterlösung wurde A umgeschrieben in [mm] [0,1]\times[0,z)\times[0,y) [/mm]
Damit erhält man [mm] P(A)=\bruch{1}{10} [/mm]

Wenn ich allerdings [mm] A=[0,1]\times(x,z)\times[0,1] [/mm] verwende erhalte ich [mm] P(A)=-\bruch{1}{6} [/mm]

Habe ich A falsch umgeschrieben?
Es gibt eigentlich etliche Möglichkeiten A in ein kartesisches Produkt umzuschreiben oder?

Hier mal meine Rechnung dazu:

[mm] P(A)=\integral_{(0,1)}dx\integral_{(0,1)}dz\integral_{(x,z)}dy [/mm] 4xy
[mm] =\integral_{(0,1)}dx\integral_{(0,1)}dz [2xz^2-2x^3] [/mm]
[mm] =\integral_{(0,1)}dx(\bruch{2}{3}x-2x^3) [/mm]
=1/3-1/2=-1/6

Viele Grüße
Christian

        
Bezug
Integral/Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Fr 31.07.2009
Autor: MathePower

Hallo Fry,

> Sei [mm]f:\IR^3\to\IR[/mm] gegeben durch
> [mm]f(x,y,z)=4xy*1_{[0,1]^3}(x,y,z)[/mm]
>  Es sei (X,Y,Z) ein Zufallsvektor, dessen Verteilung die
> Wkeitsdichte f besitzt.
>  Bestimmen Sie P(X<Y<Z).
>  Hallo!
>  
> Ich hab mir mal gedacht, dass die obige Aufgabe anders
> löse als in der Musterlösung.
>  
> Man soll ja P(A) berechnen mit [mm]A=\{(x,y,z)\in\IR^3,0\le x
>  
> In der Musterlösung wurde A umgeschrieben in
> [mm][0,1]\times[0,z)\times[0,y)[/mm]
>  Damit erhält man [mm]P(A)=\bruch{1}{10}[/mm]
>  
> Wenn ich allerdings [mm]A=[0,1]\times(x,z)\times[0,1][/mm] verwende
> erhalte ich [mm]P(A)=-\bruch{1}{6}[/mm]
>  
> Habe ich A falsch umgeschrieben?


Ja, hier hast Du nicht berücksichtigt, daß [mm] Z > X[/mm] sein muß.


>  Es gibt eigentlich etliche Möglichkeiten A in ein
> kartesisches Produkt umzuschreiben oder?
>  
> Hier mal meine Rechnung dazu:
>  
> [mm]P(A)=\integral_{(0,1)}dx\integral_{(0,1)}dz\integral_{(x,z)}dy[/mm]
> 4xy
>  [mm]=\integral_{(0,1)}dx\integral_{(0,1)}dz [2xz^2-2x^3][/mm]
>  
> [mm]=\integral_{(0,1)}dx(\bruch{2}{3}x-2x^3)[/mm]
>  =1/3-1/2=-1/6
>  
> Viele Grüße
>  Christian


Gruß
MathePower

Bezug
        
Bezug
Integral/Fubini: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Fr 31.07.2009
Autor: Leopold_Gast

Schon die Annahme, daß [mm]A[/mm] "umgeschrieben" wurde, ist falsch. [mm][0,1] \times [0,z) \times [0,y)[/mm] ist ja von [mm]z,y[/mm] abhängig und kann schon deshalb nicht gleich [mm]A[/mm] sein, denn [mm]A[/mm] hängt von keinen Parametern ab.

[mm]A[/mm] ist kein kartesisches Produkt dreier Intervalle! Solche sind immer achsenparallele Quader. [mm]A[/mm] ist aber eine Pyramide!

Skizziere dir einmal die Menge [mm]A[/mm] aller Punkte [mm](x,y,z)[/mm] mit [mm]0 \leq x < y < z \leq 1[/mm].

Du solltest dir den Satz von Fubini noch einmal genau anschauen.

Bezug
                
Bezug
Integral/Fubini: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Sa 01.08.2009
Autor: Fry

Hallo ihr beiden,

habe jetzt die Mengen angepasst und jetzt hats rechnerisch geklappt.
Danke!

@Leopold:
Habe mir mal ne Zeichnung gemacht und eingesehen, dass die Mengen unterschiedlich sind
Könntest du mir nochmal erklären, warum man dann aber einfach "über das kartesische Produkt" integriert bzw wie man den Integrationsweg "herausfindet"?

Würde mir auch vorstellen, dass die Funktion entsprechend außerhalb von A =0 ist und man daher den Integrationsbereich ausdehnen kann.

Wäre toll, wenn du versuchen könntest, dass etwas zu erklären. Danke!

Gruß
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de