www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral Lösen
Integral Lösen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral Lösen: Integral Ansatz
Status: (Frage) beantwortet Status 
Datum: 15:05 Mi 29.01.2014
Autor: xxgenisxx

Aufgabe
Bestimmen sie eine Stammfunktion für die Funktionen:
[...] [mm] \frac{1}{sin(x)cos(2x)} [/mm] [...]

Hallo,
ich soll dieses Integral lösen und weiß nicht wie, wir hatten bis jetzt so ziemlich jede Methode das Ding zu lösen glaub ich
(also Partielle Integration und ganzschön heftige Substitutionen)
Ich habe die Frage sonst nirgends gestellt
mfg ;)

        
Bezug
Integral Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Mi 29.01.2014
Autor: Sax

Hi,

schau dir mal []Wolframs Lösung an und beantworte mir eine Frage : Wie krank muss ein Hirn sein, um auf so was zu kommen ?

Gruß Sax.

Bezug
                
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 29.01.2014
Autor: fred97


> Hi,
>  
> schau dir mal
> []Wolframs Lösung
> an und beantworte mir eine Frage : Wie krank muss ein Hirn
> sein, um auf so was zu kommen ?


Hallo Sax,

die Frage lautet doch eher: Wie krank muss ein Hirn sein, eine solche Aufgabe zu stellen ?

Gruß FRED

>  
> Gruß Sax.


Bezug
                        
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mi 29.01.2014
Autor: Sax

Hi,

ich meinte, dass dies ein gutes Beispiel für die alte Weisheit ist, wonach Genie und Wahnsinn oft eng beieinander liegen.

Gruß Sax.

Bezug
                
Bezug
Integral Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 29.01.2014
Autor: xxgenisxx

Ich hatte wegen dieser Antwort heute extra meinen Prof gefragt, ob das ein Fehler sei. Er meinte nein, man würde eine vernünftige Lösung bekommen...

Bezug
                        
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mi 29.01.2014
Autor: schachuzipus

Hallo,

dann scheint dein Prof unter "vernünftig" nicht das zu verstehen, was der gemeine Ottonormalmathematiker darunter versteht ;-)

Er hat sich sicher verschrieben ...

Gruß

schachuzipus

Bezug
                        
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Mi 29.01.2014
Autor: Sax

Hi,

oder du hast dich verschrieben und es sollte $ [mm] cos^2 [/mm] x $ anstatt  $ cos 2x $ heißen.

Gruß Sax

Bezug
                                
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Mi 29.01.2014
Autor: xxgenisxx

Nein hab ich nicht^^

Bezug
                        
Bezug
Integral Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 29.01.2014
Autor: Leopold_Gast

Über den Sinn von solchen Trainingsaufgaben kann man immer streiten. Aber so schlecht finde ich diese hier gar nicht. Mit trigonometrischen Umformungen und Standardtricks kommt man ans Ziel:

[mm]\frac{1}{\sin(x) \cos(2x)} = \frac{1}{\sin(x) \cdot \left( 2 \cos^2(x)- 1 \right)} = \frac{\sin(x)}{\sin^2(x) \cdot \left( 2 \cos^2(x)- 1 \right)} = \frac{\sin(x)}{\left( 1 - \cos^2(x) \right) \cdot \left( 2 \cos^2(x) -1 \right)}[/mm]

Mit der Substitution

[mm]u = \cos(x)[/mm]

macht man den Integranden rational:

[mm]\int \frac{\mathrm{d}x}{\sin(x) \cos(2x)} = \int \frac{\mathrm{d}u}{\left( u^2 - 1 \right) \cdot \left( 2u^2 -1 \right)}[/mm]

Dann Partialbruchzerlegung:

[mm]\frac{1}{\left( u^2 - 1 \right) \cdot \left( 2u^2 -1 \right)} = \frac{1}{u^2-1} - \frac{2}{2u^2-1}[/mm]

Jetzt kann man die quadratischen Polynome weiter in ihre Bestandteile zerlegen und die Partialbruchzerlegung weiterführen. Oder man schaut, wenn man keine Lust mehr hat, in Integraltabellen nach.

Nach Resubstitution erhält man jedenfalls:

[mm]\int \frac{\mathrm{d}x}{\sin(x) \cos(2x)} = \frac{1}{2} \cdot \left( \ln \left| \frac{\cos(x)-1}{\cos(x)+1} \right| - \sqrt{2} \cdot \ln \left| \frac{\sqrt{2} \cdot \cos(x)-1}{\sqrt{2} \cdot \cos(x)+1} \right| \right)[/mm]

Ich habe schon schönere Stammfunktionen gesehen. Aber auch häßlichere.

Bezug
                                
Bezug
Integral Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 29.01.2014
Autor: xxgenisxx

Super Sache,
Danke, ich hoffe sowas kommt nich in der Klausur da wäre ich im Leben nicht drauf gekommen o.O

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de