www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral ableiten
Integral ableiten < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Di 26.06.2012
Autor: Ganz

Hallo,
ich muss folgendes lösen:
[mm] h:(0,\infty) [/mm] -> [mm] \IR [/mm] mit [mm] h(x)=\integral_{0}^{x^{2}}{sin(t^{2}) dt} [/mm]
Bestimme [mm] h´(\wurzel[4]{\pi}) [/mm]
Hinweis: Sie können h als verknüpfung zweier funktionen schreiben.
Ich glaube dass man das mit dem Hauptsatz der different. und integralr. macht, jedoch kriege ich die Stammfunktion nicht hin. Ich darf nicht partiell ableiten. Subst. bringt mich nicht weiter und der hinweis hilft mir auch nicht.


Gruß

        
Bezug
Integral ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Di 26.06.2012
Autor: Marcel

Hallo,

> Hallo,
>  ich muss folgendes lösen:
> [mm]h:(0,\infty)[/mm] -> [mm]\IR[/mm] mit
> [mm]h(x)=\integral_{0}^{x^{2}}{sin(t^{2}) dt}[/mm]
> Bestimme [mm]h´(\wurzel[4]{\pi})[/mm]

schreibe das als [mm] $h\,'$ [/mm] - sonst erkennt man das Ableitungszeichen nicht! (Sicher ein Grund, warum viele sich Deine Aufgabe nicht näher angeguckt haben!)

>  Hinweis: Sie können h als verknüpfung zweier funktionen
> schreiben.
>  Ich glaube dass man das mit dem Hauptsatz der different.
> und integralr. macht, jedoch kriege ich die Stammfunktion
> nicht hin. Ich darf nicht partiell ableiten. Subst. bringt
> mich nicht weiter und der hinweis hilft mir auch nicht.

Setze [mm] $f(x):=\int_0^x \sin(t^2)dt$ [/mm] und [mm] $g(x):=x^2\,.$ [/mm] Dann ist $h=(f [mm] \circ [/mm] g)$ (berechne einfach durch Einsetzen $f(g(x))$).

Wir haben alle Voraussetzungen für folgendes:
Es gilt daher
[mm] $$h'(x)=f'(g(x))*g'(x)\,.$$ [/mm]

Und klar: Es ist [mm] $f'(u)=\sin(u^2)$ [/mm] nach dem HDI, also [mm] $f'(g(x))=\sin(g^2(x))=\sin(x^4)$ [/mm] und [mm] $g'(x)=(x^2)'$ [/mm] kannst Du sicher selbst ausrechnen. Damit kommst Du sicher zum Ziel!

Gruß,
  Marcel

Bezug
                
Bezug
Integral ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Do 28.06.2012
Autor: Ganz

Hallo, danke für die super Antwort.

>  
> schreibe das als [mm]h\,'[/mm] - sonst erkennt man das
> Ableitungszeichen nicht! (Sicher ein Grund, warum viele
> sich Deine Aufgabe nicht näher angeguckt haben!)

Habe ich gar nicht bemerkt.

> Setze [mm]f(x):=\int_0^x \sin(t^2)dt[/mm] und [mm]g(x):=x^2\,.[/mm]

Warum geht die obere Grenze nur bis x und nicht bis [mm] x^2? [/mm]

> Wir haben alle Voraussetzungen für folgendes:
>  Es gilt daher
>  [mm]h'(x)=f'(g(x))*g'(x)\,.[/mm]
>  
> Und klar: Es ist [mm]f'(u)=\sin(u^2)[/mm] nach dem HDI, also
> [mm]f'(g(x))=\sin(g^2(x))=\sin(x^4)[/mm] und [mm]g'(x)=(x^2)'[/mm] kannst Du
> sicher selbst ausrechnen. Damit kommst Du sicher zum Ziel!

Also ist [mm] h'(x)=sin(x^{4})*2x [/mm] ?

Gruß


Bezug
                        
Bezug
Integral ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Do 28.06.2012
Autor: MathePower

Hallo Ganz,

> Hallo, danke für die super Antwort.
>  
> >  

> > schreibe das als [mm]h\,'[/mm] - sonst erkennt man das
> > Ableitungszeichen nicht! (Sicher ein Grund, warum viele
> > sich Deine Aufgabe nicht näher angeguckt haben!)
>  Habe ich gar nicht bemerkt.
>  
> > Setze [mm]f(x):=\int_0^x \sin(t^2)dt[/mm] und [mm]g(x):=x^2\,.[/mm]
> Warum geht die obere Grenze nur bis x und nicht bis [mm]x^2?[/mm]
>  > Wir haben alle Voraussetzungen für folgendes:

>  >  Es gilt daher
>  >  [mm]h'(x)=f'(g(x))*g'(x)\,.[/mm]
>  >  
> > Und klar: Es ist [mm]f'(u)=\sin(u^2)[/mm] nach dem HDI, also
> > [mm]f'(g(x))=\sin(g^2(x))=\sin(x^4)[/mm] und [mm]g'(x)=(x^2)'[/mm] kannst Du
> > sicher selbst ausrechnen. Damit kommst Du sicher zum Ziel!
>  Also ist [mm]h'(x)=sin(x^{4})*2x[/mm] ?
>  


Ja.


> Gruß
>  


Gruss
MathePower

Bezug
                        
Bezug
Integral ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Do 28.06.2012
Autor: Marcel

Hallo,

> Hallo, danke für die super Antwort.
>  
> >  

> > schreibe das als [mm]h\,'[/mm] - sonst erkennt man das
> > Ableitungszeichen nicht! (Sicher ein Grund, warum viele
> > sich Deine Aufgabe nicht näher angeguckt haben!)
>  Habe ich gar nicht bemerkt.
>  
> > Setze [mm]f(x):=\int_0^x \sin(t^2)dt[/mm] und [mm]g(x):=x^2\,.[/mm]
> Warum geht die obere Grenze nur bis x und nicht bis [mm]x^2?[/mm]Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



weil ich es so definiert habe: Das war doch gerade der Sinn. Wir wollen den HDI anwenden, dann müssen wir etwas reinschmuggeln, dass man ihn darauf anwenden kann. Und was $\left.\frac{d}{dx}\int_0^xf(t)dt\right|_{x_0}$ ist, wissen wir nach dem HDI halt (sofern die Voraussetzung zu seiner Anwendbarkeit gegeben sind - aber die sind hier gegeben!): $f(x_0)\,.$

>  > Wir haben alle Voraussetzungen für folgendes:

>  >  Es gilt daher
>  >  [mm]h'(x)=f'(g(x))*g'(x)\,.[/mm]
>  >  
> > Und klar: Es ist [mm]f'(u)=\sin(u^2)[/mm] nach dem HDI, also
> > [mm]f'(g(x))=\sin(g^2(x))=\sin(x^4)[/mm] und [mm]g'(x)=(x^2)'[/mm] kannst Du
> > sicher selbst ausrechnen. Damit kommst Du sicher zum Ziel!
>  Also ist [mm]h'(x)=sin(x^{4})*2x[/mm] ?

Ja. Und nun ist halt laut Aufgabenstellung [mm] $h\,'(\sqrt[4]{\pi})$ [/mm] gesucht: Setze also noch [mm] $x=\sqrt[4]{\pi}$ [/mm] in [mm] $\sin(x^4)*2x$ [/mm] ein!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de