www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Integral auf Riemannfläche
Integral auf Riemannfläche < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral auf Riemannfläche: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:33 Di 02.03.2010
Autor: gfm

Hallo!

Es scheint ja offenbar so zu sein, dass man Riemannflächen u.a. aus dem Graph einer Funktion gewinnen kann (richtig?:

Nehmen wir an, wir hätten eine eindeutige Funktion f

f: [mm] z\mapsto [/mm] f(z); [mm] z\in D\subseteq\IC, [/mm]

die jedoch nicht eindeutig umkehrbar ist, weil verschiedene Argumente z<>z'zu gleichen Bildern f(z)=f(z') führen, d.h. wenn wir w=f(z) nach z auflösen wollen, könnten wir es mit unterschiedlichen Zweigen [mm] z=f^{-}_1(w), z=f^{-}_2(w),... [/mm] zu tun bekommen.

Also definiert man die Umkehrrelation

[mm] f^-=\{(w,z)\in\IC|w=f(z)\} [/mm] als Riemannfläche (richtig?) und erhält mit

[mm] (w,z)\mapsto [/mm] z

wieder eine eindeutige und reguläre Abbildung (richtig?)

Die Frage ist jetzt: Wie formuliere ich Wege und Integrale über diese Wege in der Riemannfläche?

Nehmen wir doch die Wurzelfunktion: Wie schreibe ich jetzt geschlossen und "in schön" einen Weg, auf bei dem man sieht, wie er über die zwei Blätter läuft? Und da die Funktion ja jetzt regulär ist: Wie kommt dann wenn der Weg offen eine Differenz der Stammfunktion an den Enden des Weges raus?

Erwarte ich zuviel? Oder muss man sich dass immer (so wie das aufschneiden und zusammenflicken) zusammenstückeln?

LG

gfm

Habe die Frage nur hier gestellt.

        
Bezug
Integral auf Riemannfläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Di 02.03.2010
Autor: gfm


> [mm]f^-=\{(w,z)\in\IC|w=f(z)\}[/mm] als Riemannfläche (richtig?)

Typo: [mm] f^-=\{(w,z)\in\IC^2|w=f(z)\} [/mm]

Bezug
        
Bezug
Integral auf Riemannfläche: Sie ist ja nicht regulär...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Di 02.03.2010
Autor: gfm

weil im Ursprung eine Verzeigung vorliegt. Macht nichts. Dann kann man sich für eine Kurve aus zwei Kreisen um den Ursprung interessieren und die verbinden, so dass die Wurzel in der "normalen" komplexen Zahlenebene zwischen den Kreisen wieder regulär wird. Das Integral ist dann die Summe aus den Integralen über die Kreise, oder?

Wie würde man so was auf der Riemannfläche machen und aufschreiben?

LG

gfm

Bezug
        
Bezug
Integral auf Riemannfläche: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 11.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de