www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integral berechnen
Integral berechnen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: partielle Integration
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:26 Sa 14.01.2006
Autor: legris

Aufgabe
  [mm] \integral{ \bruch{x}{sin(x)^{2}}dx} [/mm]  (part. Integration)

Ich habe probiert, das Integral mit partieller Integration zu lösen, und bin auf folgendes Resultat gekommen:
[mm] \bruch{x^{2}}{2sin(x)^{2}}- \integral{\bruch{-x^{2}cos(x)}{sin(x)^{3}}dx} [/mm]
Das Integral kann man noch einmal partiell integrieren. Als Resultat erhalte ich 2 Terme, die sich aufheben plus das Ausgangsintegral, was mir natürlich nicht viel weiterhilft:

[mm] \integral{ \bruch{x}{sin(x)^{2}}dx} [/mm] = [mm] \bruch{x^{2}}{2sin(x)^{2}}+x^{2}*\bruch{-1}{2sin(x)^{2}}+\integral{2x*\bruch{1}{2sin(x)^{2}}dx} [/mm]

Die Gleichung ist trivial. Wenn man das Integral mit einem negativen Vorzeichen bekäme, könnte man die beiden gleichen (!) Integrale auf eine Seite bringen und auflösen. So funktioniert das aber nicht. Wie kann man das lösen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:18 Sa 14.01.2006
Autor: Pacapear

Hallo!  

Kannst du vielleicht mal die letzte Zeile deiner Rechnung hier rein schreiben? Ich meine das, wo du nochmal das Ausgangsintegral rausbekommen hast. Ich kann mir nämlich grad nicht wirklich vorstellen, wie das aussieht. So wie ich das jetzt nämlich verstanden habe, wäre  [mm] \integral_{a}^{b} [/mm] {f(x) dx} =  [mm] \integral_{a}^{b} [/mm] {f(x) dx}, und das ist es bestimmt nicht, oder?

LG, Dino

Bezug
        
Bezug
Integral berechnen: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Sa 14.01.2006
Autor: legris

Hey Leute, habs selber herausgefunden!

Mithilfe von (cot(x))' = [mm] \bruch{-1}{sin(x)^{2}} [/mm] (aus der Formelsammlung) lässt sich die Aufgabe lösen. Man integriert partiell:

[mm] \integral{x*\bruch{1}{sin(x)^{2}} dx} [/mm] = x* [mm] \bruch{-1}{tan(x)}-\integral{\bruch{-1}{tan(x)}*1 dx} [/mm]

[mm] =\bruch{-x}{tan(x)}+\integral{\bruch{cos(x)}{sin(x)}dx} [/mm]

[mm] =\bruch{-x}{tan(x)}+ln [/mm] |sin(x)|+C

Das letzte Integral kann ganz bequem mit logarithmischer Integration gelöst werden. Voilà!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de