www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral berechnen
Integral berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Fr 14.03.2008
Autor: ebarni

Aufgabe
[mm]-\summe_{k=0}^{n} \bruch{1}{2^{k}*k!} *\integral_{0}^{x}{t^{2k+1}dt}[/mm]

Hallo zusammen, bis hierhin bin ich gekommen.

Jetzt bin ich mir bei der Stammfunktion nicht sicher, was mache ich mit dem k?

Ist meine Stammfunktion [mm] \bruch{t^{(2k+1)+1}}{(2k+1)+1} = \bruch{t^{2k+2}}{2k+2} = \bruch{t^{2(k+1)}}{2(k+1)}[/mm]

Viele Grüße und danke für eure Hilfe, Andreas

        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Fr 14.03.2008
Autor: angela.h.b.


> Ist meine Stammfunktion [mm]\bruch{t^{(2k+1)+1}}{(2k+1)+1} = \bruch{t^{2k+2}}{2k+2} = \bruch{t^{2(k+1)}}{2(k+1)}[/mm]

Hallo,

ja, Deine Stammfunktion ist richtig.

Das k muß Dich nicht weiter belasten. Der Exponent im Integral ist ja für alle  [mm] k\in \IN_0 [/mm] eine natürliche Zahl, also nix Bösartiges.

Gruß v. Angela

Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 14.03.2008
Autor: ebarni

Hallo Angela, vielen Dank fürs Nachschauen.

ich erhalte also insgesamt:

$ [mm] -\summe_{k=0}^{n} \bruch{1}{2^{k}\cdot{}k!} \cdot{}\integral_{0}^{x}{t^{2k+1}dt} [/mm] = [mm] -\summe_{k=0}^{n} \bruch{1}{2^{k}\cdot{}k!} [/mm] * [mm] \bruch{x^{2(k+1)}}{2(k+1)} [/mm] $

Die Frage ist: Wie kann man das noch zusammenfassen / vereinfachen?

Für einen Hinweis wäre ich sehr dankbar. Und wie man drauf kommt, würde mich dann auch brennend interessieren..;-)

Liebe Grüße, Andreas



Bezug
                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Fr 14.03.2008
Autor: angela.h.b.


> Hallo Angela, vielen Dank fürs Nachschauen.
>  
> ich erhalte also insgesamt:
>  
> [mm]-\summe_{k=0}^{n} \bruch{1}{2^{k}\cdot{}k!} \cdot{}\integral_{0}^{x}{t^{2k+1}dt} = -\summe_{k=0}^{n} \bruch{1}{2^{k}\cdot{}k!} * \bruch{x^{2(k+1)}}{2(k+1)}[/mm]
>  
> Die Frage ist: Wie kann man das noch zusammenfassen /
> vereinfachen?
>  
> Für einen Hinweis wäre ich sehr dankbar. Und wie man drauf
> kommt, würde mich dann auch brennend interessieren..;-)

Hallo,

ich denke mir, daß es erstmal hilfreich ist, wenn ich Dir den Nenner in anderer Sortierung aufschreibe:

[mm] 2^{k}\cdot{}k!2(k+1)= 2^{k}*2*k!*(k+1)= [/mm] ???

Gruß v. Angela

Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Fr 14.03.2008
Autor: ebarni

Hallo Angela, vielen lieben Dank. Also:

$ [mm] 2^{k}\cdot{}k!2(k+1)= 2^{k}\cdot{}2\cdot{}k!\cdot{}(k+1)= 2^{k+1}\cdot{}k!\cdot{}(k+1) [/mm] = [mm] 2^{k+1}\cdot{}(k!\cdot{}k+k!)$ [/mm]

Stimmt das soweit?

Liebe Grüße, Andreas

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:28 Fr 14.03.2008
Autor: Tyskie84

Hallo!

> Hallo Angela, vielen lieben Dank. Also:
>  
> [mm]2^{k}\cdot{}k!2(k+1)= 2^{k}\cdot{}2\cdot{}k!\cdot{}(k+1)= 2^{k+1}\cdot{}k!\cdot{}(k+1) = 2^{k+1}\cdot{}(k!\cdot{}k+k!)[/mm]
>  
> Stimmt das soweit?
>  
> Liebe Grüße, Andreas

Fast :-)

Es ist [mm] 2^{k}\cdot{2}\cdot{k!}\cdot(k+1)=2^{k+1}\cdot{k!}\cdot(k+1)=2^{k+1}\cdot(k+1)! [/mm]

[cap] Gruß

Bezug
                                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Fr 14.03.2008
Autor: ebarni

Liebe Tyskie, vielen Dank für Deine Antwort.

Aber warum ist

$ [mm] {k!}\cdot(k+1)=(k+1)!$ [/mm]

Gibt es da eine Regel für Fakultätenberechnung?

LG, Andreas

Bezug
                                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Fr 14.03.2008
Autor: ullim


> Liebe Tyskie, vielen Dank für Deine Antwort.
>  
> Aber warum ist
>  
> [mm]{k!}\cdot(k+1)=(k+1)![/mm]
>  

Die Fakultät ist definiert als

k! = 1*2* ... *(k-1)*k

also gilt

(k+1)! = 1*2* ... * (k-1)*k*(k+1)

Die ersten k Faktoren ergebn k! also gilt (k+1)! = k!*(k+1)

mfg ullim


Bezug
                                                                
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Fr 14.03.2008
Autor: ebarni

Hallo ullim, vielen Dank für die Erklärung! [lichtaufgegangen].

Viele Grüße an alle im Forum!

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de