www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral berechnen
Integral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 So 21.03.2010
Autor: TheBozz-mismo

Aufgabe
Berechnen Sie [mm] \integral_{-10\pi}^{20\pi}{\wurzel{1-sin^2(x)} dx} [/mm]

So,mein Lösungsversuch ist:
Für den Ausdruck unter der Wurzel kann man auch mithilfe der triginometrischen Phytagoras so schreiben:

[mm] \integral_{-10\pi}^{20\pi}{\wurzel{cos^2(x)} dx}=\integral_{-10\pi}^{20\pi}{cos(x) dx} [/mm] und eine Stammfunktion ist ja sin(x) in den Grenzen [mm] -10\pi [/mm] und [mm] 20\pi [/mm]

[mm] =>sin(20\pi)-(sin(-10\pi)) [/mm] = 0

Irgendwie glaub ich, dass ich ein Fehler gemacht habe.

Kann mir einer helfen um dieser Aufgabe?
Gruß
TheBozz-mismo
PS:Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Integral berechnen: Wurzel aus Quadrat
Status: (Antwort) fertig Status 
Datum: 10:23 So 21.03.2010
Autor: Al-Chwarizmi


> [mm]\integral_{-10\pi}^{20\pi}{\wurzel{1-sin^2(x)} dx}[/mm]

> So,mein Lösungsversuch ist:
> Den Ausdruck unter der Wurzel kann man mit Hilfe
> des trigonometrischen Pythagoras so schreiben:
>  
> [mm]\integral_{-10\pi}^{20\pi}{\wurzel{cos^2(x)} dx}=\integral_{-10\pi}^{20\pi}{cos(x) dx}[/mm]       [notok]

> und eine Stammfunktion ist ja sin(x) in den Grenzen [mm]-10\pi[/mm]
> und [mm]20\pi[/mm]
>  
> [mm]=>sin(20\pi)-(sin(-10\pi))[/mm] = 0
>  
> Irgendwie glaub ich, dass ich einen Fehler gemacht habe.
>  
> Kann mir einer helfen bei dieser Aufgabe?
>  Gruß
>  TheBozz-mismo


Hallo,

bedenke einfach, dass die Gleichung  [mm] $\sqrt{A^2}\ [/mm] =\ A$  nur dann
richtig ist, falls  [mm] A\ge0 [/mm] ist. Im Allgemeinen ist [mm] $\sqrt{A^2}\ [/mm] =\ |A|$


LG    Al-Chw.


Bezug
                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 So 21.03.2010
Autor: TheBozz-mismo

So, erstmal danke für deine Antwort.
Ok, also nach deiner Überlegung ist dann die Stammfunktion sin(x) falsch, aber die Substitution bzw. [mm] cos^2(x) [/mm] einzusetzen ist doch richtig?
[mm] \integral_{-10\pi}^{20\pi}{\wurzel{cos^2(x)} dx}=$ \integral_{-10\pi}^{20\pi}{\wurzel{cos(x)cos(x)} dx} [/mm]
Das ist doch richtig. So, und wie soll ich weiter verfahren und bringt mich diese Schreibweise überhaupt weiter?
Vielleicht partieller Integration?

Ich bitte um Hilfe
Danke
TheBozz-mismo

Bezug
                        
Bezug
Integral berechnen: zeichnen und schauen
Status: (Antwort) fertig Status 
Datum: 13:55 So 21.03.2010
Autor: Al-Chwarizmi


> So, erstmal danke für deine Antwort.
>  Ok, also nach deiner Überlegung ist dann die
> Stammfunktion sin(x) falsch, aber die Substitution bzw.
> [mm]cos^2(x)[/mm] einzusetzen ist doch richtig?

Klar, das war schon in Ordnung.

>   [mm]\integral_{-10\pi}^{20\pi}{\wurzel{cos^2(x)} dx}=$ \integral_{-10\pi}^{20\pi}{\wurzel{cos(x)cos(x)} dx}[/mm]
>  
> Das ist doch richtig. So, und wie soll ich weiter verfahren
> und bringt mich diese Schreibweise überhaupt weiter?
>  Vielleicht partieller Integration?

Braucht man nicht. Skizzier dir einfach einmal die Funktion  

         $\ y\ =\ [mm] \wurzel{cos(x)*cos(x)}\ [/mm] =\ |cos(x)|$

welche jetzt den Integranden darstellt und meditiere ein
wenig über das entstandene Bild ...


LG   Al-Chw.

Bezug
                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 21.03.2010
Autor: TheBozz-mismo

Ok, ich hab mir mal Gedanken über den Graphen gemacht. Man sieht ja, dass |cos(x)| [mm] \pi-periodisch [/mm] ist, deshalb kann man das Integral berechnen
[mm] 30*\integral_{\bruch{-\pi}{2}}^{\bruch{\pi}{2}}{cos(x) dx} [/mm]  (Hier ist der Cosinius ja nicht keiner Null)
[mm] =30(sin(\bruch{\pi}{2})-sin(\bruch{-\pi}{2})) [/mm]
=30*2=60, aber mein Taschenrechner sagt mir ein Ergebnis von 70

Wo liegt mein Denk-bzw. Rechenfehler?

Vielen Dank
TheBozz-mismo

Bezug
                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 So 21.03.2010
Autor: Al-Chwarizmi


> Ok, ich hab mir mal Gedanken über den Graphen gemacht. Man
> sieht ja, dass |cos(x)| [mm]\pi-periodisch[/mm] ist, deshalb kann
> man das Integral berechnen
> [mm]30*\integral_{\bruch{-\pi}{2}}^{\bruch{\pi}{2}}{cos(x) dx}[/mm]  
> (Hier ist der Cosinus ja nicht keiner Null)
>  [mm]=30(sin(\bruch{\pi}{2})-sin(\bruch{-\pi}{2}))[/mm]
>  =30*2=60, aber mein Taschenrechner sagt mir ein Ergebnis
> von 70
>  
> Wo liegt mein Denk-bzw. Rechenfehler?
>  
> Vielen Dank
>  TheBozz-mismo


Die zu berechnende Fläche besteht aus 29 ganzen plus zwei
"halben" Segmenten mit einer Größe von je 2 Flächeneinheiten.
Also ist die Gesamtfläche gleich 60.

LG


Bezug
                                                
Bezug
Integral berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 So 21.03.2010
Autor: TheBozz-mismo

Das hab ich doch auch geschrieben, also ist 60 richtig?
Meine Rechnung ist doch auch richtig, oder?
Mein taschenrechner sagt mir 70, aber ich wüßte auch nicht, wo der Fehler sein soll.

Wäre schön, wenn du oder auch ein anderer das bestätigen würde

Gruß
TheBozz-mismo

Bezug
                                                        
Bezug
Integral berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 21.03.2010
Autor: MathePower

Hallo TheBozz-mismo,

> Das hab ich doch auch geschrieben, also ist 60 richtig?
> Meine Rechnung ist doch auch richtig, oder?


Ja, Deine Rechung ist richtig.


>  Mein taschenrechner sagt mir 70, aber ich wüßte auch
> nicht, wo der Fehler sein soll.
>  


Die 70 kommen dadurch zustande, daß
Dein Taschenrechner 5 Intervalle der Länge [mm]\pi[/mm]
irgendwie hinzugedichtet hat.


> Wäre schön, wenn du oder auch ein anderer das bestätigen
> würde
>  
> Gruß
>  TheBozz-mismo


Gruss
MathePower

Bezug
                                                                
Bezug
Integral berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 So 21.03.2010
Autor: TheBozz-mismo

Vielen lieben Dank für die Bestätigung

Schönen Abend noch

TheBozz-mismo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de