www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral bestimmen
Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 So 17.12.2006
Autor: borto

hallo,

könnt ihr mir helfen, wie ich die stammfunktionen zu diesem integral bilden kann, bitte?

Danke im Voraus.

1) [mm] \bruch{1}{\wurzel{24+8x-16x^2}} [/mm]

2) [mm] \bruch{1}{\wurzel{1-(3x-2)^2}} [/mm]

3) [mm] \bruch{x}{\wurzel{1-(3x)^2}} [/mm]

Lg
borto

        
Bezug
Integral bestimmen: zu Aufgabe 3
Status: (Antwort) fertig Status 
Datum: 03:15 So 17.12.2006
Autor: Loddar

Hallo borto!


> 3) [mm]\bruch{x}{\wurzel{1-(3x)^2}}[/mm]

Substituiere hier: $z \ := \ [mm] 1-(3x)^2 [/mm] \ = \ [mm] 1-9x^2$ [/mm]  mit  $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ -18*x$


Gruß
Loddar


Bezug
                
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 So 17.12.2006
Autor: vikin

Hallo,

[mm] \bruch{x}{\wurzel{1-9x^2}} [/mm]

z:= [mm] 1-9x^2 [/mm]

dx := [mm] \bruch{dz}{-18x} [/mm]

Nun habe ich folgendes gemacht:

[mm] \bruch{x}{\wurzel{z}} [/mm] * [mm] \bruch{dz}{-18x} [/mm]

Nun habe ich die x's gekürzt.


Sodass ich folgendes raus habe:


[mm] \bruch{1}{-18 * \wurzel{z}} [/mm]    =    

- [mm] \bruch{1}{18 * z^(1/2)} [/mm]         =

-18 * [mm] z^{- \bruch{1}{2}} [/mm]  

Sodass die Stammfunktion, also die Aufleitung wie folgt lautet:

[ -36 * [mm] z^{\bruch{1}{2}} [/mm]  ]

oder?
Also ich persönlich glaube, dass das falsch ist. Ich habe par werte eingestzt und es kommt was anderes raus als im derive.

Aber im Derive habe ich komischer Weise eine komplexe Lösung mit i wenn ich dort werte einsetze.

Ist nun die obige Aufleitung falsch oder doch richtig?
Bin sehr verwirrt.


Mit freundlichem Gruß
vikin

Bezug
                        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 So 17.12.2006
Autor: Zwerglein

Hi, vikin,

> [mm]\bruch{x}{\wurzel{1-9x^2}}[/mm]
>  
> z:= [mm]1-9x^2[/mm]
>  
> dx := [mm]\bruch{dz}{-18x}[/mm]
>  
> Nun habe ich folgendes gemacht:
>  
> [mm]\bruch{x}{\wurzel{z}}[/mm] * [mm]\bruch{dz}{-18x}[/mm]
>  
> Nun habe ich die x's gekürzt.

Du musst schon hinschreiben, wann Du das Integral und wann die Stammfunktion meinst.
Das alles soll also noch die Umformung der Integrandenfunktion sein, stimmt's?
  

> Sodass ich folgendes raus habe:
>
> [mm]\bruch{1}{-18 * \wurzel{z}}[/mm]    =    
>
> - [mm]\bruch{1}{18 * z^(1/2)}[/mm]         =

>

> -18 * z ^(1/2)  

Die Umformung gibt's nicht!
Richtig wäre:

[mm] -\bruch{1}{18}*z^{-\bruch{1}{2}} [/mm]

> Sodass die Stammfunktion, also die Aufleitung wie folgt
> lautet:
>  
> [ -36 z ^(1/2) ]

Richtig wäre nach meiner obigen Bemerkung die Stammfunktion:

[mm] -\bruch{1}{9}*z^{\bruch{1}{2}} [/mm] (+c)

Und: Rücksubstitution nicht vergessen!

mfG!
Zwerglein

Bezug
                                
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 So 17.12.2006
Autor: vikin

Hallo,

und wirklich danke, das war ein sehr dummer Fehler von mir.

Nun habe ich auch das gleiche wie du rausbekommen.


Ich habe nun eine Frage zu der Aufgabe 1:

[mm] \bruch{1}{\wurzel{24+8x-16x^2}} [/mm]

Ganz spontan würde ich hier nun z:= [mm] 24+8x+16x^2 [/mm]    nehmen.
Aber stört es, dass im Zähler kein x vorhanden ist, und ich diese x auch deshalb nicht wegmachen, also kürzen oder so kann.

Hättet ihr vielleicht Ansätze für mich?

Danke im Voraus.

Mit freundlichem Gruß
vikin

Bezug
                                        
Bezug
Integral bestimmen: siehe unten
Status: (Antwort) fertig Status 
Datum: 12:04 So 17.12.2006
Autor: Loddar

Hallo viki!


Siehe auch Zwerglein's Antwort.


Mit einigen Umformungen / quadratischer Ergänzung erhält man im Nenner:

[mm] $\wurzel{24+8x-16x^2} [/mm] \ = \ [mm] \wurzel{25-(1-4x)^2} [/mm] \ = \ [mm] \wurzel{25*\left[1-\bruch{(4x-1)^2}{5^2}\right] \ } [/mm] \ = \ [mm] 5*\wurzel{1-\left(\bruch{4x-1}{5}\right)^2 \ }$ [/mm]

Nun den Ausdruck in den runden Klammern substituieren.


Gruß
Loddar


Bezug
        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 17.12.2006
Autor: Zwerglein

Hi, vikin,

> könnt ihr mir helfen, wie ich die stammfunktionen zu diesem
> integral bilden kann, bitte?
>  
> 1) [mm]\bruch{1}{\wurzel{24+8x-16x^2}}[/mm]
>  
> 2) [mm]\bruch{1}{\wurzel{1-(3x-2)^2}}[/mm]

Bei Aufgabe 2 musst Du z=(3x-2) substituieren; dann führt das auf den arcsin(z).

Bei Aufgabe 1 musst Du quadratisch ergänzen.
Dann bekommst Du in der Wurzel den Ausdruck: 25 - [mm] (4x-1)^{2}. [/mm]

Nach entsprechender Umformung und Substitution ähnlich wie bei Aufgabe 2 kommst Du wieder zum arcsin.

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de