Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Bestimme den Flächeninhalt unter dem Parabelbogen der Funktion [mm] f(x)=x^2 [/mm] im Intervall (2;5). (Mit Obersumme oder Untersumme) |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Würde mich sehr freuen wenn ihr mir bei dieser Aufgabe weiterhelfen könnt.
Ich habe so begonnen:
On= [mm] \bruch{3}{n}\* f(2+\bruch{3}{n})+\bruch{3}{n}*f(2*2+\bruch{3}{n})+...+ \bruch{3}{n}*f(2+n*\bruch{3}{n})
[/mm]
dann :
On= [mm] \bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+(2+n*\bruch{3}{n})^{2})
[/mm]
Nun ist meine Frage, was ich mit der 2+ mache die überall steht, da der Intervall ja durch sie eingegrenzt ist.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:03 Mo 20.09.2010 | Autor: | Blech |
Hi,
> On=
> [mm]\bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+(2+n*\bruch{3}{n})^{2})[/mm]
Hier fehlen die [mm] $\ldots$, [/mm] schreiben wir's lieber mit dem Summenszeichen:
[mm]\bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+\ldots+(2+n*\bruch{3}{n})^{2})=\bruch{3}{n}\sum_{i=1}^n \left(2+i\frac3n\right)^2[/mm]
> Nun ist meine Frage, was ich mit der 2+ mache die überall
> steht, da der Intervall ja durch sie eingegrenzt ist.
Ausmultiplizieren, 1. binomische Formel =)
[mm]\bruch{3}{n}\sum_{i=1}^n \left(2+i\frac3n\right)^2=\bruch{3}{n}\sum_{i=1}^n \left(4+4i\frac3n +\left(i\frac3n\right)^2\right)= \bruch{3}{n}\sum_{i=1}^n 4+ \bruch{3}{n}\sum_{i=1}^n 4i\frac3n + \bruch{3}{n}\sum_{i=1}^n \left(i\frac3n\right)^2[/mm]
ciao
Stefan
|
|
|
|
|
Ehm also zu dieser Schreibweise,mir sind die komischen Klammern da total neu. stehen die für dieses, [mm] 1^2 +2^2 +..+n^2 [/mm] ? oder wie ? weil das ist ja jetzt hier ganz weg oder ?
tut mir leid wenn des vllt ne ganz einfach sache ist
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:58 Mo 20.09.2010 | Autor: | Blech |
Hi,
> Ehm also zu dieser Schreibweise,mir sind die komischen
> Klammern da total neu. stehen die für dieses, [mm]1^2 +2^2 +..+n^2[/mm]
> ? oder wie ? weil das ist ja jetzt hier ganz weg oder ?
Ihr macht den ganzen Summenkram wirklich ohne Summenzeichen? Schlag Deinem Lehrer mal Unterricht im Freien vor. Wenn der Herr irgendwann Hirn vom Himmel schmeißt, soll kein Dach im Weg sein. ^^
Die komische Klammer ist ein großes Sigma und steht für Summe.
[mm] $\sum_{i=1}^n$ [/mm] spricht sich "Summe von i gleich 1 bis n" und heißt, daß Du in dem Term, der danach kommt n mal addierst. Beim ersten Summanden ersetzt Du jedes i durch eine 1, beim zweiten durch eine 2, beim dritten durch eine 3, etc.
[mm] $1^2 +2^2 +..+n^2$ [/mm] wäre also [mm] $\sum_{i=1}^n i^2$
[/mm]
Da das Summenzeichen nur die Schreibarbeit ersetzt, verhält es sich wie eine normale Summe:
Beispiele: (für irgendeine konstante Zahl K)
[mm] $\sum_{i=1}^n [/mm] K = [mm] \underbrace{K + K + K +\ldots + K}_{n\text{-mal}} [/mm] = n*K$
Das ist wichtig: Beachte, wie ich es oben geschrieben hab, Du hast auf jeden Fall n Summanden, egal ob und in welcher Form i vorkommt.
[mm] $\sum_{i=1}^n [/mm] K*i = [mm] K*1+K*2+K*3+\ldots+K*n [/mm] = K [mm] \sum_{i=1}^n [/mm] i$
In der Summe behandelt man das i, wie eine Variable, man kann es also addieren, ausklammern, etc:
[mm] $\sum_{i=1}^n [/mm] (i+4i)= [mm] \sum_{i=1}^n [/mm] 5i = [mm] 5\sum_{i=1}^n [/mm] i$
Ausgeschrieben war das:
$(1+4\ +\ 2+8\ +\ [mm] \ldots\ [/mm] +\ n+4n)=(5\ +\ 10\ +\ [mm] \ldots\ [/mm] +\ 5n)=5(1\ +\ 2\ +\ [mm] \ldots\ [/mm] +\ 3)$
oder man kann die Summe umarrangieren:
[mm] $\sum_{i=1}^n [/mm] (i+4i) = [mm] \sum_{i=1}^n [/mm] i + [mm] \sum_{i=1}^n [/mm] 4i= [mm] \sum_{i=1}^n [/mm] i + [mm] 4\sum_{i=1}^n [/mm] i= [mm] (1+4)\sum_{i=1}^n [/mm] i= [mm] 5\sum_{i=1}^n [/mm] i$
bei zweiterem lief's also so ab:
[mm] $\underbrace{(1+4\ +\ 2+8\ +\ \ldots\ +\ n+4n)}_{=\sum_{i=1}^n(i+4i)}=\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}+\underbrace{(4+8+\ldots+4n)}_{=\sum_{i=1}^n4i}=$
[/mm]
[mm] $=\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}+\underbrace{4(1+2+\ldots+n)}_{4\sum_{i=1}^ni}= (1+4)\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}$
[/mm]
relevant für Dich ist der gemischte Term
[mm] $\sum_{i=1}^n (K+i+i^2)= $\sum_{i=1}^n K+\sum_{i=1}^n i+\sum_{i=1}^n i^2$
[/mm]
wobei bei Deiner Summe jeweils noch eine weitere Konstante bei den Termen rumschwirrt.
ciao
Stefan
|
|
|
|