www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral bestimmen
Integral bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bestimmen: Korrektur + Tipps
Status: (Frage) beantwortet Status 
Datum: 17:44 Mo 20.09.2010
Autor: xOdeliciouseOx

Aufgabe
Bestimme den Flächeninhalt unter dem Parabelbogen der Funktion [mm] f(x)=x^2 [/mm] im Intervall (2;5). (Mit Obersumme oder Untersumme)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Würde mich sehr freuen wenn ihr mir bei dieser Aufgabe weiterhelfen könnt.
Ich habe so begonnen:

On= [mm] \bruch{3}{n}\* f(2+\bruch{3}{n})+\bruch{3}{n}*f(2*2+\bruch{3}{n})+...+ \bruch{3}{n}*f(2+n*\bruch{3}{n}) [/mm]

dann :

On= [mm] \bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+(2+n*\bruch{3}{n})^{2}) [/mm]

Nun ist meine Frage, was ich mit der 2+ mache die überall steht, da der Intervall ja durch sie eingegrenzt ist.

        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mo 20.09.2010
Autor: Blech

Hi,

> On=
> [mm]\bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+(2+n*\bruch{3}{n})^{2})[/mm]

Hier fehlen die [mm] $\ldots$, [/mm] schreiben wir's lieber mit dem Summenszeichen:

[mm]\bruch{3}{n}((2+\bruch{3}{n})^{2}+(2+2*\bruch{3}{n})^{2}+\ldots+(2+n*\bruch{3}{n})^{2})=\bruch{3}{n}\sum_{i=1}^n \left(2+i\frac3n\right)^2[/mm]

  

> Nun ist meine Frage, was ich mit der 2+ mache die überall
> steht, da der Intervall ja durch sie eingegrenzt ist.

Ausmultiplizieren, 1. binomische Formel =)

[mm]\bruch{3}{n}\sum_{i=1}^n \left(2+i\frac3n\right)^2=\bruch{3}{n}\sum_{i=1}^n \left(4+4i\frac3n +\left(i\frac3n\right)^2\right)= \bruch{3}{n}\sum_{i=1}^n 4+ \bruch{3}{n}\sum_{i=1}^n 4i\frac3n + \bruch{3}{n}\sum_{i=1}^n \left(i\frac3n\right)^2[/mm]



ciao
Stefan

Bezug
                
Bezug
Integral bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mo 20.09.2010
Autor: xOdeliciouseOx

Ehm also zu dieser Schreibweise,mir sind die komischen Klammern da total neu. stehen die für dieses, [mm] 1^2 +2^2 +..+n^2 [/mm] ? oder wie ? weil das ist ja jetzt hier ganz weg oder ?

tut mir leid wenn des vllt ne ganz einfach sache ist :-)

Bezug
                        
Bezug
Integral bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mo 20.09.2010
Autor: Blech

Hi,

> Ehm also zu dieser Schreibweise,mir sind die komischen
> Klammern da total neu. stehen die für dieses, [mm]1^2 +2^2 +..+n^2[/mm]
> ? oder wie ? weil das ist ja jetzt hier ganz weg oder ?

Ihr macht den ganzen Summenkram wirklich ohne Summenzeichen? Schlag Deinem Lehrer mal Unterricht im Freien vor. Wenn der Herr irgendwann Hirn vom Himmel schmeißt, soll kein Dach im Weg sein. ^^


Die komische Klammer ist ein großes Sigma und steht für Summe.

[mm] $\sum_{i=1}^n$ [/mm] spricht sich "Summe von i gleich 1 bis n" und heißt, daß Du in dem Term, der danach kommt n mal addierst. Beim ersten Summanden ersetzt Du jedes i durch eine 1, beim zweiten durch eine 2, beim dritten durch eine 3, etc.


[mm] $1^2 +2^2 +..+n^2$ [/mm] wäre also [mm] $\sum_{i=1}^n i^2$ [/mm]

Da das Summenzeichen nur die Schreibarbeit ersetzt, verhält es sich wie eine normale Summe:

Beispiele: (für irgendeine konstante Zahl K)

[mm] $\sum_{i=1}^n [/mm] K = [mm] \underbrace{K + K + K +\ldots + K}_{n\text{-mal}} [/mm] = n*K$
Das ist wichtig: Beachte, wie ich es oben geschrieben hab, Du hast auf jeden Fall n Summanden, egal ob und in welcher Form i vorkommt.


[mm] $\sum_{i=1}^n [/mm] K*i = [mm] K*1+K*2+K*3+\ldots+K*n [/mm] = K [mm] \sum_{i=1}^n [/mm] i$

In der Summe behandelt man das i, wie eine Variable, man kann es also addieren, ausklammern, etc:
[mm] $\sum_{i=1}^n [/mm] (i+4i)= [mm] \sum_{i=1}^n [/mm] 5i = [mm] 5\sum_{i=1}^n [/mm] i$

Ausgeschrieben war das:
$(1+4\ +\ 2+8\ +\ [mm] \ldots\ [/mm] +\ n+4n)=(5\ +\ 10\ +\ [mm] \ldots\ [/mm] +\ 5n)=5(1\ +\ 2\ +\ [mm] \ldots\ [/mm] +\ 3)$


oder man kann die Summe umarrangieren:
[mm] $\sum_{i=1}^n [/mm] (i+4i) = [mm] \sum_{i=1}^n [/mm] i + [mm] \sum_{i=1}^n [/mm] 4i= [mm] \sum_{i=1}^n [/mm] i + [mm] 4\sum_{i=1}^n [/mm] i= [mm] (1+4)\sum_{i=1}^n [/mm] i= [mm] 5\sum_{i=1}^n [/mm] i$

bei zweiterem lief's also so ab:
[mm] $\underbrace{(1+4\ +\ 2+8\ +\ \ldots\ +\ n+4n)}_{=\sum_{i=1}^n(i+4i)}=\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}+\underbrace{(4+8+\ldots+4n)}_{=\sum_{i=1}^n4i}=$ [/mm]

[mm] $=\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}+\underbrace{4(1+2+\ldots+n)}_{4\sum_{i=1}^ni}= (1+4)\underbrace{(1+2+\ldots+n)}_{\sum_{i=1}^ni}$ [/mm]

relevant für Dich ist der gemischte Term

[mm] $\sum_{i=1}^n (K+i+i^2)= $\sum_{i=1}^n K+\sum_{i=1}^n i+\sum_{i=1}^n i^2$ [/mm]

wobei bei Deiner Summe jeweils noch eine weitere Konstante bei den Termen rumschwirrt.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de