www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral bis unendlich
Integral bis unendlich < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral bis unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Fr 30.01.2009
Autor: Marry2605

Aufgabe
[mm] \integral_{1}^{\infty}{\bruch{1}{x^4} dx} [/mm]
[mm] \integral_{1}^{\infty}{\bruch{1}{sqrt(x)} dx} [/mm]

Soo ich hab wieder eine Aufgabe gemacht und würde gerne wissen ob ichs richtig gemacht habe...
Wenn ich an eine solche Aufgabe rangehe habe ich mir folgendes Schema gemerkt:

[mm] \limes_{c\rightarrow\infty} [/mm] ( [mm] \integral_{1}^{c}{\bruch{1}{x^4} dx} [/mm] )
Wenn ich das Integral dann auflöse komme ich auf

F(c) - F(1)
Was dann ergibt :
[mm] -\bruch{1}{3c^3} [/mm] - [mm] \bruch{1}{3} [/mm]
Wobei cih dann als Ergebnis wenn ich c gegen unendlich gehen lasse auf [mm] \bruch{1}{3} [/mm] komme?

Stimmt das soweit?
Bei der 2. Aufgabe komme icih dann auf [mm] 2*\wurzel{c} [/mm] - 2

Lg

        
Bezug
Integral bis unendlich: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Fr 30.01.2009
Autor: Tyskie84

Hallo,

> [mm]\integral_{1}^{\infty}{\bruch{1}{x^4} dx}[/mm]
>  
> [mm]\integral_{1}^{\infty}{\bruch{1}{sqrt(x)} dx}[/mm]
>  Soo ich hab
> wieder eine Aufgabe gemacht und würde gerne wissen ob ichs
> richtig gemacht habe...
>  Wenn ich an eine solche Aufgabe rangehe habe ich mir
> folgendes Schema gemerkt:
>  
> [mm]\limes_{c\rightarrow\infty}[/mm] (
> [mm]\integral_{1}^{c}{\bruch{1}{x^4} dx}[/mm] )
>  Wenn ich das Integral dann auflöse komme ich auf
>  
> F(c) - F(1)
>  Was dann ergibt :
>  [mm]-\bruch{1}{3c^3}[/mm] red{+} [mm]\bruch{1}{3}[/mm]
>  Wobei cih dann als Ergebnis wenn ich c gegen unendlich
> gehen lasse auf [mm]\bruch{1}{3}[/mm] komme?
>  

[daumenhoch]

> Stimmt das soweit?
>  Bei der 2. Aufgabe komme icih dann auf [mm]2*\wurzel{c}[/mm] - 2
>  

[ok]..

> Lg


[hut] Gruß

Bezug
                
Bezug
Integral bis unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 Fr 30.01.2009
Autor: Marry2605

:-) Das freut mich jetzt aber!
Ich habe auf meinem Übungsblatt noch 2 weitere Beispiele :
$ [mm] \integral_{1}^{\infty}{ e^x dx} [/mm] $
$ [mm] \integral_{1}^{\infty}{ e^-x dx} [/mm] $

Nach dem selben Prinzip berechnet komme ich beim 1. auf
Beim 1. sollte dann ja rauskommen [mm] e^c-e^1 [/mm]
Und beim 2. nach Substitution mit u=-x
komme ich auf [mm] -e^{-c} [/mm] + [mm] e^{-1} [/mm]

Wenn das jetzt noch stimmt kann ich in ruhe schlafen gehen ^^ ...

Lg

Bezug
                        
Bezug
Integral bis unendlich: soweit okay
Status: (Antwort) fertig Status 
Datum: 23:29 Fr 30.01.2009
Autor: Loddar

Hallo Marry!


Soweit okay ... und wie lauten nun die jeweilgen Grenzwerte für [mm] $c\rightarrow\infty$ [/mm] ?


Gruß
Loddar


Bezug
                                
Bezug
Integral bis unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Fr 30.01.2009
Autor: Marry2605

Ähm, wenn in der Aufgabe steht ich soll die jeweilgen Integralwerte bestimmen, gehört das dann dazu?

Also beim ersten würde ich sagen das geht gegen [mm] +\infty [/mm]
Bei der 2. wenn ich ein großes c einsetze würde ich sagen gegen Null?

Lg

Bezug
                                        
Bezug
Integral bis unendlich: Grenzwerte berechnen
Status: (Antwort) fertig Status 
Datum: 23:41 Fr 30.01.2009
Autor: Loddar

Hallo Marry!


> Ähm, wenn in der Aufgabe steht ich soll die jeweilgen
> Integralwerte bestimmen, gehört das dann dazu?

Aber ja! Steht denn in Deine Aufgabenstellung was von irgendeinem $c_$ ? Siehste ...

  

> Also beim ersten würde ich sagen das geht gegen [mm]+\infty[/mm]

[ok]


> Bei der 2. wenn ich ein großes c einsetze würde ich sagen
> gegen Null?

Das stimmt für [mm] $e^{-c}$ [/mm] . Aber den Term [mm] $e^{-1}$ [/mm] nicht vergessen!


Gruß
Loddar


Bezug
                                                
Bezug
Integral bis unendlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Fr 30.01.2009
Autor: Marry2605


> Aber ja! Steht denn in Deine Aufgabenstellung was von
> irgendeinem [mm]c_[/mm] ? Siehste ...

Stimmt, da hast du wohl recht :)


> > Bei der 2. wenn ich ein großes c einsetze würde ich sagen
> > gegen Null?
>  
> Das stimmt für [mm]e^{-c}[/mm] . Aber den Term [mm]e^{-1}[/mm] nicht
> vergessen!

Oh ja, stimmt. [mm] e^{-1} [/mm] ist von dem c ja nicht betroffen. Deswegen sollte das ganze dann gegen [mm] e^{-1} [/mm] gehen, das andere geht ja gegen Null und verschwindet somit....

Lg

Bezug
                                                        
Bezug
Integral bis unendlich: richtig
Status: (Antwort) fertig Status 
Datum: 23:52 Fr 30.01.2009
Autor: Loddar

Hallo Marry!


[daumenhoch]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de