www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral cos^2
Integral cos^2 < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral cos^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:44 Di 26.01.2016
Autor: Tabeah

Aufgabe
[mm] \integral_{0}^{\pi}{cos(x)^{2} dx} [/mm]

Berechne das Integral.

Hallo,

also ich komme ab einen bestimmten Punkt nicht weiter:

[mm] \integral_{0}^{\pi}{cos(x)^{2} dx}=\integral_{0}^{\pi}{cos(x)*cos(x) dx} [/mm] ... dann gehts weiter mit der partiellen Integration:

[mm] \integral_{a}^{b}{u*v'dx}=[u*v]_{a}^{b}-\integral_{a}^{b}{u'*v dx} \Rightarrow [/mm]

u=cos(x) u'=-sin v'=cos(x) v=sin(x)
[mm] [cos(x)*sin(x)]_{0}^{\pi}+\integral_{0}^{\pi}{sin(x)*sin(x) dx} [/mm]
soweit ist es Korrekt aber dann würde ich weiterrechnen:

u=sin(x) u'=cos(x) v'=sin(x) v=-cos(x)
[mm] [cos(x)*sin(x)]_{0}^{\pi}-[sin(x)*cos(x)]_{0}^{\pi}+\integral_{0}^{\pi}{cos(x)*cos(x) dx} [/mm]

wenn ich nun [mm] \integral_{0}^{\pi}{cos(x)*cos(x) dx} [/mm] von beiden seiten abziehe dann steht da ja

[mm] 0=[cos(x)*sin(x)]_{0}^{\pi}-[sin(x)*cos(x)]_{0}^{\pi} [/mm] und somit 0=0 ... was ja irgendwie stimmt aber kein Ergebnis für ein Integral ist -.- ...

Ich habe öffters solche Probleme in der Musterlösung steht
[mm] [cos(x)*sin(x)]_{0}^{\pi}+\integral_{0}^{\pi}{sin(x)*sin(x) dx}=0+\integral_{0}^{\pi}{1-cos(x)^2 dx}=\bruch{\pi}{2} [/mm] ... Aber das verstehe ich nicht wieso ist [mm] \integral_{0}^{\pi}{sin(x)*sin(x) dx}=\integral_{0}^{\pi}{1-cos(x)^2 dx} [/mm] ???


        
Bezug
Integral cos^2: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 26.01.2016
Autor: fred97

[mm] cos^2(x)+sin^2(x)=1. [/mm]

FRED

Bezug
                
Bezug
Integral cos^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Di 26.01.2016
Autor: Tabeah

Öhm mag sein aber das steht da doch nirgendwo oder irre ich ? Da steht am Anfang wie am ende das Integral von [mm] cos^{2}(x) [/mm] von null bis pi und in der Mitte irgendwo das Integral von [mm] sin^{2}(x). [/mm] Ich sehe irgendwie noch nicht wie sie verbunden sein sollen.

Bezug
                        
Bezug
Integral cos^2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Di 26.01.2016
Autor: Chris84


> Öhm mag sein aber das steht da doch nirgendwo oder irre
> ich ? Da steht am Anfang wie am ende das Integral von

Aehm doch....

[mm] $sin(x)\cdot [/mm] sin(x) = [mm] sin^2(x)$ [/mm]

und das ist mit Freds Hinweis gerade [mm] $=1-cos^2(x)$ [/mm]

> [mm]cos^{2}(x)[/mm] von null bis pi und in der Mitte irgendwo das
> Integral von [mm]sin^{2}(x).[/mm] Ich sehe irgendwie noch nicht wie
> sie verbunden sein sollen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de