www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integral dx dy
Integral dx dy < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral dx dy: Idee
Status: (Frage) beantwortet Status 
Datum: 23:27 Do 24.01.2013
Autor: saendra

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Hey ihr! Ich weiß es kostet wenige Augenblicke es sich anzuschauen, aber ich hoffe trotzdem jemand hilft mir: Gegeben ist

$f:[0,1]\times [0,1]\to \IR,\quad (x,y)\mapsto \begin{cases}  2^{2k},  & \text{wenn }k\in \IN\quad \text{mit }\ 2^{-k}<x\leq 2^{1-k}\ \text{ und}\quad 2^{-k}<y\leq 2^{1-k}\\ -2^{2k+1},  & \text{wenn }k\in \IN\quad \text{mit }\ 2^{-k}<x\leq 2^{1-k}\ \text{ und}\quad 2^{-k-1}<y\leq 2^{-k} \\ 0 & \text{sonst }\end{cases}$


Sehr schöne funktion, ich weiß :-)

Nun soll ich $\integral_{0}^{1} \left( \integral_{0}^{1}{f(x,y)\;  dx}\right) dy$ berechnen.

Ist das die richtige Vorgehensweise?:

$ \integral_{0}^{1} \left( \integral_{0}^{1}{f(x,y)\; dx}\right) dy = \integral_{(2^{-k},\; 2^{1-k}]}\left (\; \integral_{(2^{-k},\; 2^{1-k}]} 2^{2k}\; dx\right) dy\ +\, \integral_{(2^{-k-1},\; 2^{-k}]}\left (\; \integral_{(2^{-k},\; 2^{1-k}]} -2^{2k+1}\; dx\right) dy\ +\, \underbrace{\integral_{[0,\; 2^{-k-1}]\dot{\cup} (2^{-k},\; 1]}\left (\; \integral_{[0,\; 2^{-k}]\dot{\cup} (2^{1-k},\; 1]} 0\; dx\right) dy}_{=0}$


Liebe Grüße

        
Bezug
Integral dx dy: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Fr 25.01.2013
Autor: Gonozal_IX

Hiho,

> Nun soll ich [mm]\integral_{0}^{1} \left( \integral_{0}^{1}{f(x,y)\; dx}\right) dy[/mm]
> berechnen.
>  Ist das die richtige Vorgehensweise?:

Das kann man so nicht sagen, ohne zu wissen, was du gemacht hast.
Aber zumindest sieht das Ergebnis richtig aus :-)

Aber es einfach direkt als Doppelintegral hinzuschreiben, halte ich für schwierig.
Ich vermute einfach mal, die Aufgabe ist dafür da um ein Gefühl für Fubini zu bekommen?

Ich würde auch für einen möglichen Korrektor noch ein paar Zwischenschritte einbauen.
Wenn du das dx-Integral berechnen willst, ist dein y in f(x,y) ja beliebig, aber fest, so dass du deine Funktion dann umschreiben kannst in:

$f(x,y) = [mm] f(x,y)*1_{\left(2^{-k},2^{-k+1}\right]}(y) [/mm] + [mm] f(x,y)*1_{\left(2^{-k-1},2^{-k}\right]}(y)$ [/mm]

Den Zwischenschritt würde ich schon noch einbauen, damit man es besser sieht.

MFG,
Gono.

Bezug
                
Bezug
Integral dx dy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 So 27.01.2013
Autor: saendra

Hi Gono,

sry, dass ich erst jetzt antworte, aber es hat 2 Tage gedauert, bis ich das endlich umsetzen konnte. Es war eine sehr schwere Geburt, aber ich denke mit deinem Tipp habe ich es dann richtig hinbekommen.


Vielen Dank dafür!

Bezug
        
Bezug
Integral dx dy: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mi 30.01.2013
Autor: saendra

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hi nochmals! Eine Sache habe ich vergessen. Ich muss davor noch zeigen, dass $ \integral_{0}^{1} \left( \integral_{0}^{1}{f(x,y)\; dx}\right) dy $ überhaupt existiert.

Wie mache ich das? Hier nochmals die Funktion:

$ f:[0,1]\times [0,1]\to \IR,\quad (x,y)\mapsto \begin{cases} 2^{2k}, & \text{wenn }k\in \IN\quad \text{mit }\ 2^{-k}<x\leq 2^{1-k}\ \text{ und}\quad 2^{-k}<y\leq 2^{1-k}\\ -2^{2k+1}, & \text{wenn }k\in \IN\quad \text{mit }\ 2^{-k}<x\leq 2^{1-k}\ \text{ und}\quad 2^{-k-1}<y\leq 2^{-k} \\ 0 & \text{sonst }\end{cases} $


Weiß jemand, wie man das zeigt? Dass $f$ auf $[0,1]^2$ Riemann-integierbar ist habe ich gezeigt. Aber daraus folgt nicht die Existenz dieses obigen Integrals oder? Sondern nur dieses Integrals: $ \integral_{[0,1]^2} {f(x,y)\; d(x,y) $ oder? Ist da vielleicht Fubini anwendbar?

Bezug
                
Bezug
Integral dx dy: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mi 30.01.2013
Autor: reverend

Hallo saendra,

> Hi nochmals! Eine Sache habe ich vergessen. Ich muss davor
> noch zeigen, dass [mm]\integral_{0}^{1} \left( \integral_{0}^{1}{f(x,y)\; dx}\right) dy[/mm]
> überhaupt existiert.
>  
> Wie mache ich das? Hier nochmals die Funktion:
>  
> [mm]f:[0,1]\times [0,1]\to \IR,\quad (x,y)\mapsto \begin{cases} 2^{2k}, & \text{wenn }k\in \IN\quad \text{mit }\ 2^{-k}
>  
>
> Weiß jemand, wie man das zeigt? Dass [mm]f[/mm] auf [mm][0,1]^2[/mm]
> Riemann-integierbar ist habe ich gezeigt. Aber daraus folgt
> nicht die Existenz dieses obigen Integrals oder? Sondern
> nur dieses Integrals: [mm]\integral_{[0,1]^2} {f(x,y)\; d(x,y)[/mm]
> oder? Ist da vielleicht Fubini anwendbar?

Na, []lies doch mal. Hast Du alle Vorbedingungen erfüllt?

Grüße
reverend


Bezug
                        
Bezug
Integral dx dy: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Mi 30.01.2013
Autor: saendra

Hi reverend! Danke.

Nein, leider habe ich nicht alle erfüllt. Mit dem Vorschlag Fubini wollte ich eigentlich nur zeigen, dass ich mir bei der Aufgabe auch Gedanken gemacht habe und nicht einfach nur auf die Lösung warte... :-)

Weißt du wie ich die Existenz zeigen kann?

Bezug
                                
Bezug
Integral dx dy: trotzdem Fubini (Frage im PS)
Status: (Antwort) fertig Status 
Datum: 16:16 Mi 30.01.2013
Autor: reverend

Hallo nochmal,

komisch, dass keiner antwortet...

> Hi reverend! Danke.

Das war doch nur ein Link und eine Frage. :-)

> Nein, leider habe ich nicht alle erfüllt. Mit dem
> Vorschlag Fubini wollte ich eigentlich nur zeigen, dass ich
> mir bei der Aufgabe auch Gedanken gemacht habe und nicht
> einfach nur auf die Lösung warte... :-)
>  
> Weißt du wie ich die Existenz zeigen kann?

Nicht erfüllt ist die Stetigkeit, alles andere passt doch.
Kannst Du das Integrationsgebiet in stetige Bereiche unterteilen? In denen würde Fubini jeweils für sich gelten. Dann bliebe nur noch das Problem, wie man das zusammenfügt.
Die Existenz des gesuchten Integrals wäre so jedenfalls noch relativ leicht nachzuweisen.

Grüße
reverend

PS: Ich finde gerade nirgends, wie man zeigt, dass Fubini in stetigen Bereichen gilt, die nicht allein durch kompakte Intervalle zu beschreiben sind. Kann jemand bestätigen, dass das gilt - und kann es jemand zeigen (oder einen Beweis verlinken)?


Bezug
                                        
Bezug
Integral dx dy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 30.01.2013
Autor: saendra

Hi. Danke, aber es ist okay, am Montag bekommen wir die Lösung.

Danke euch nochmals! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de